Thevenin Equivalents with Phasors

EE 206 Circuits I

Jake Glower

03/19/20

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Thevenin equivalents also work with phasors - only you get complex numbers for the Thevenin voltage and Thevenin resistance.

	VI relationship	Phasor Notation
Voltage	$v(t)=a \cos (\omega t)+b \sin (\omega t)$	$V=a-j b$
Resistor	$v=i R$	$Z_{R}=R$
Inductor	$v=L \frac{d i}{d t}$	$Z_{L}=j \omega L$
Capacitor	$i=C \frac{d v}{d t}$	$Z_{C}=\frac{1}{j \omega C}$

Example 1: Determine

- The Thevenin equivalent for the following circuit,
- ZL for max power transfer, and
- The maximum power to a load

Solution: Combine the 20 Ohms and -j30 Ohms in parallel:

$$
20 \|-j 30=(13.846-j 9.231) \Omega
$$

The Thevenin voltage by voltage division is

$$
V_{\text {th }}=\left(\frac{(13.846-j 9.231)}{(13.846-j 9.231)+(6+j 10)}\right) 100=67.836-j 49.142
$$

The Thevenin resistance is (turn off the voltage source and measure the resistance looking in:

$$
\begin{aligned}
& Z_{t h}=(-j 30)\|(20)\|(6+j 10) \\
& Z_{t h}=8.968+j 3.838
\end{aligned}
$$

So the Thevenin equivalent is

AC Power

At DC, power is

$$
P=V I=\frac{V^{2}}{R}=I^{2} R
$$

For AC
rms units

$$
\begin{array}{rlrl}
P= & V_{r m s} \cdot I_{r m s}^{*} & P & =\frac{1}{2} V_{p} I_{p}^{*} \\
& =\left|I_{r m s}\right|^{2} \cdot Z & & =\frac{1}{2}\left|I_{p}\right|^{2} Z \\
& =\frac{\left|V_{r m s}\right|^{2}}{Z^{*}} & & =\frac{1}{2} \frac{\left|V_{p}\right|^{2}}{Z^{*}}
\end{array}
$$

- The real part of P is the work done (or heat produced),
- The complex part of P is the energy that bounces back and forth.

Maximum Power to the Load

Maximum power to the load is when the load is the complex conjugate of Zth :

$$
Z_{L}=Z_{t h}^{*}
$$

Example:

Determine

- The load, ZL, which maximimizes the power to the load, and
- The power to the load (real and complex power)

Solution: The load should be the complex conjugate of Zth

$$
\begin{aligned}
& Z_{L}=(8.968+j 3.838)^{*} \\
& Z_{L}=8.968-j 3.838
\end{aligned}
$$

To find RL and jXL , add the inverses (since they are in parallel):

$$
\begin{aligned}
& \frac{1}{Z_{L}}=\frac{1}{R_{L}}+\frac{1}{-j X_{L}} \\
& R_{L}=10.611 \Omega \\
& -j X_{L}=-j 24.793 \Omega
\end{aligned}
$$

The power to the load is then

$$
\begin{aligned}
& V_{L}=\left(\frac{(8.968-j 3.838)}{(8.969-j 3.838)+(8.968+j 3.838)}\right) \cdot(67.836-j 49.142) \\
& V_{L}=23.402-j 39.087
\end{aligned}
$$

Assuming units are rms:

$$
\begin{aligned}
P= & \frac{\left|V_{r m s}\right|^{2}}{Z^{*}}=\frac{|23.402-j 39.087|}{(8.969-j 3.838)^{*}} \\
& =\frac{(45.557)^{2}}{8.969+j 3.838} \\
& =4.293-j 1.837 \quad \text { Watts }
\end{aligned}
$$

The real part is the power to the load (driving a motor, heating a resistor) The complex part is power that bounces back and forth

"Capacitors add Voltage"

If Zth is inductove, then adding capacitors to the load,

- Cancels the complex part of Zth, which
- Reduces the overall impedance, which
- Increases the current to the load, which
- Increases the voltage at the load.

This only works up to a point: once you have cancelled all of the inductance $(+\mathrm{jX})$, adding more capacitors will actually redice the voltage.

Example 3: Source Transformations

Source transformations also work with complex numbers. For example, determine the Thevenin equivalent for the following circuit:

Step 1: Convert to a Norton equivalent

$$
\begin{aligned}
& Z_{N}=Z_{t h}=5+j 10 \\
& I_{N}=\frac{V_{t h}}{Z_{t h}}=4-j 8
\end{aligned}
$$

Combine impedances in parallel

$$
(5+j 10)||(50)||(-j 60)=7.883+j 8.321
$$

Convert to Thevenin

$$
\begin{aligned}
& Z_{\text {th }}=Z_{N}=7.883+j 8.321 \\
& V_{\text {th }}=I_{N} \cdot Z_{N}=(4-j 8) \cdot(7.883+j 8.321) \\
& V_{\text {th }}=98.102-j 29.781
\end{aligned}
$$

Now find the Thevenin equivalent.
By voltage division:

$$
\begin{aligned}
& V_{t h}=\left(\frac{(38.40-j 28.80)}{(38.40-j 28.80)+(7.883-j 29.781)+(2+j 15)}\right)(98.102-j 29.781) \\
& V_{t h}=68.701-j 74.405
\end{aligned}
$$

Zth: Turn off the source and measure the impedance

$$
\begin{array}{ll}
Z_{\text {th }}=((7.83-j 29.781)+(2+j 15)) \mid\|(60)\|(-j 80) & \text { Zth } \\
Z_{\text {th }}=20.077+j 14.931 & 20.077+j 14.931
\end{array}
$$

