Op-Amp Circuits with Phasors

EE 206 Circuits I

Jake Glower

03/19/20

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Single-Pole Low-Pass Filter

Find the voltage, $y(t)$, for

$$
x(t)=3 \sin (50 t)
$$

Step 1:

- Define ground (already done)
- Define the voltage nodes
- Convert to the phasor domain

$$
x(t)=3 \sin (50 t) \rightarrow X=0-j 3
$$

$0.1 \mu F \rightarrow \frac{1}{j \omega C}=-j 200 k$

Step 2: Write the voltage node equtions

$$
\begin{aligned}
& V_{0}=-j 3 \\
& V_{1}=V_{2} \\
& V_{2}=0 \\
& \left(\frac{V_{1}-V_{0}}{10 k}\right)+\left(\frac{V_{1}-V_{3}}{-j 200 k}\right)+\left(\frac{V_{1}-V_{3}}{100 k}\right)=0
\end{aligned}
$$

Solve

$$
V_{3}=12+j 24=26.8 \angle 63^{0}
$$

meaning

$$
\begin{aligned}
& v_{3}(t)=12 \cos (50 t)-24 \sin (50 t) \\
& v_{3}(t)=26.8 \cos \left(50 t+63^{0}\right)
\end{aligned}
$$

Checking in CircuitLab: The input is

$$
H z=\frac{\omega}{2 \pi}=\frac{50 \mathrm{rad} / \mathrm{sec}}{2 \pi}=7.958 \mathrm{~Hz}
$$

- The period is $126 \mathrm{~ms}(7.958 \mathrm{~Hz}=50 \mathrm{rad} / \mathrm{sec})$
- The peak is 26.825 V (vs. 26.8 V calculated)
- The peak of V3 is at $\mathrm{t}=104.6 \mathrm{~ms}$ (delay $=-297$ degrees)

This matches our calculations

Example 2: Two-Pole Op-Amp Circuit

Find $y(t)$ for

$$
x(t)=3 \cos (40 t)
$$

Step 1:

- Define circuit ground (already done)
- Define the voltage nodes
- Convert to phasors
$3 \cos (40 t) \rightarrow 3+j 0$
$0.1 \mu F \rightarrow \frac{1}{j \omega C}=-j 250 k$

Step 2: Write the voltage node equations.

$$
\begin{aligned}
& V_{0}=3+j 0 \\
& V_{2}=V_{3} \\
& \left(\frac{V_{1}-V_{0}}{100 k}\right)+\left(\frac{V_{1}-V_{4}}{-j 250 k}\right)+\left(\frac{V_{1}-V_{2}}{100 k}\right)=0 \\
& \left(\frac{V_{2}-V_{1}}{100 k}\right)+\left(\frac{V_{2}-0}{-j 250 k}\right)=0 \\
& \left(\frac{V_{3}-0}{100 k}\right)+\left(\frac{V_{3}-V_{4}}{100 k}\right)=0
\end{aligned}
$$

Step 3: Solve

Group terms

$V_{0}=3$
$V_{2}-V_{3}=0$
$\left(\frac{-1}{100 k}\right) V_{0}+\left(\frac{1}{100 k}+\frac{1}{-j 250 k}+\frac{1}{100 k}\right) V_{1}+\left(\frac{-1}{100 k}\right) V_{2}+\left(\frac{-1}{100 k}\right) V_{4}=0$
$\left(\frac{-1}{100 k}\right) V_{1}+\left(\frac{1}{100 k}+\frac{1}{-j 250 k}\right) V_{2}=0$
$\left(\frac{1}{100 k}+\frac{1}{100 k}\right) V_{3}+\left(\frac{-1}{100 k}\right) V_{4}=0$

V1	$3.4658041-0.2218115 i$
V2	$2.9112754-1.3863216 i$
V3	$2.9112754-1.386216 i$
V4	$5.8225508-2.7726433 i$

$$
=Y
$$

$v_{4}(t)=5.822 \cos (40 t)+2.77 \sin (40 t)$

Checking in CircuitLab:

The output peak is 6.447 V (vs. 6.447 V computed)

$$
\phi=\left(\frac{9.9 \mathrm{~ms} \text { delay }}{157 \mathrm{~ms} \text { period }}\right) \cdot 360^{0}=22.7^{0} \text { delay (vs. } 25 \text { degrees computed) }
$$

