Superposition with Phasors

 EE 206 Circuits I

 EE 206 Circuits I}

Jake Glower

03/19/20

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Superposition with Phasors

Op-Amp circutis with RLC components are linear circuits. Linear means

$$
f(a x+b y)=a f(x)+b f(y)
$$

In English, this means that

- If the input has N terms,
- You can treat this as N separate problems.

Example: RLC Filter

Determing $\mathrm{y}(\mathrm{t})$ for the following circuit assuming

$$
x(t)=10+9 \sin (100 t)+8 \cos (200 t)
$$

Solution: Use superposition and treat this as three separate problems.

Analyze at w = 0 (DC)

$$
x_{1}(t)=10
$$

Analyze the circuit for this input.

$$
\begin{aligned}
& \omega=0 \\
& L \rightarrow j \omega L=0 \\
& C \rightarrow \frac{1}{j \omega C}=\infty \\
& Y_{1}=\left(\frac{2000}{2000+278}\right) \cdot 10=8.7796
\end{aligned}
$$

Analyze at w = $100 \mathbf{r a d} / \mathbf{s e c}$

$$
\begin{array}{ll}
x_{2}(t)=9 \sin (100 t) & \\
\omega=100 & X=0-j 9 \\
L \rightarrow j \omega L=j 1000 & C \rightarrow \frac{1}{j \omega C}=-j 5000 \\
Y_{2}=\left(\frac{(1724-j 689.6)}{(1724-j 689.6)+(278+j 1000)}\right) \cdot(0-j 9)=-4.201-j 7.099
\end{array}
$$

Analyze at w = 200 rad/sec

$$
x_{3}(t)=8 \cos (200 t)
$$

$X=8+j 0$
$\omega=200$
$L \rightarrow j \omega L=j 2000$
$C \rightarrow \frac{1}{j \omega C}=-j 2500$

$$
\begin{aligned}
& \left(\frac{1}{2000}+\frac{1}{-j 2500}\right)^{-1}=1219-j 975.6 \\
& Y=\left(\frac{1219-j 975.6}{(1219-j 975.6)+(278-j 2000)}\right) \cdot(8+j 0) \\
& Y=2.009-j 6.586
\end{aligned}
$$

The total answer is the sum of the three parts

$$
y(t)=y_{1}+y_{2}+y_{3}
$$

$$
\begin{array}{ll}
\omega=0 & Y_{1}=8.7796 \\
\omega=100 & Y_{2}=-4.201-j 7.099 \\
\omega=200 & Y_{3}=2.009-j 6.596
\end{array}
$$

$$
\begin{aligned}
y(t)= & 8.7796 \\
& -4.201 \cos (100 t)+7.099 \sin (100 t) \\
& +2.009 \cos (200 t)+6.596 \sin (200 t)
\end{aligned}
$$

