Fourier Transforms

(Superposition take 3)

EE 206 Circuits I

Jake Glower
March 22, 2020

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Superposition (review)

Superposition allows you to analyze circuits with multiple sinusoidal inputs. If this is the case

- Treat the problem as N separate problems, each with a single sinusoidal input.
- Solve each of the N problems separately using phasor analysis
- Add up all of the answers to get the total output.

Suppose your circuit has an input that isn't a sum of sinusoids.

- One solution is to approximate the input with two sine wave (what we did last lecture)
- A second solution is to define the input in terms of sine waves (this lecture)

Fourier Transform

If $x(t)$ is periodic in time T

$$
x(t)=x(t+T)
$$

then you can express $\mathrm{x}(\mathrm{t})$ as

$$
x(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right)
$$

where

$$
\omega_{0}=\frac{2 \pi}{T}
$$

Translation:

$$
x(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right)
$$

Going right to left

- If you add up a bunch of signals which are periodic in time T, the result is also periodic in time T
- Duh.

Going right to left:

- If a signal is periodic and is not a sine wave, it is made up of sine waves which are harmonics of the fundamental.

Finding Fourier Coefficients:

$$
x(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right)
$$

Analytic Solution: Integration. Wait for ECE 343 to do this Numeric Solution: Use Matlab

$$
\begin{aligned}
a_{0} & =\operatorname{mean}(x) \\
a_{n} & =2 \cdot \operatorname{mean}\left(x \cdot \cos \left(n \omega_{0} t\right)\right) \\
b_{n} & =2 \cdot \operatorname{mean}\left(x \cdot \sin \left(n \omega_{0} t\right)\right)
\end{aligned}
$$

Proof: a0:

All sine waves are orthogonal. The DC term is

$$
\begin{aligned}
& a_{0}=\operatorname{mean}(x) \\
& a_{0}=\operatorname{mean}\left(a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right)\right) \\
& a_{0}=\operatorname{mean}\left(a_{0}\right)+\operatorname{mean}\left(a_{1} \cos \left(\omega_{0} t\right)\right)+\text { mean }\left(a_{2} \cos \left(2 \omega_{0} t\right)\right)+\ldots
\end{aligned}
$$

The mean of a sine wave is zero

$$
a_{0}=a_{0}+0+0+\ldots
$$

Proof: a1

$$
\begin{aligned}
x(t) & =a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right) \\
a_{1} & =2 \operatorname{mean}\left(x \cdot \cos \left(\omega_{0} t\right)\right) \\
a_{1} & =2 \operatorname{mean}\left(\left(a_{0}+a_{1} \cos \left(\omega_{0} t\right)+b_{1} \sin \left(\omega_{0} t\right)+\ldots\right) \cdot \cos \left(\omega_{0} t\right)\right) \\
a_{1} & =2 \cdot \operatorname{mean}\left(a_{0} \cdot \cos \left(\omega_{0} t\right)\right) \\
& +2 \cdot \operatorname{mean}\left(a_{1} \cos \left(\omega_{0} t\right) \cdot \cos \left(\omega_{0} t\right)\right) \\
& +2 \cdot \operatorname{mean}\left(a_{2} \cos \left(2 \omega_{0} t\right) \cdot \cos \left(\omega_{1} t\right)\right) \\
& +\ldots
\end{aligned}
$$

The mean of a sine wave is zero. The mean of $\cos ^{2}(t)$ is $1 / 2$

$$
\begin{aligned}
& a_{1}=0+2 \cdot \frac{a_{1}}{2}+0+\ldots \\
& a_{1}=a_{1}
\end{aligned}
$$

etc.

Time Scaling:

Through a change of variable, you can make the period anything you want. Making the period 2π makes the problem easier:

$$
\begin{aligned}
& T=2 \pi \\
& \omega_{0}=\frac{2 \pi}{T}=1 \\
& x(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+b_{n} \sin (n t)
\end{aligned}
$$

Common Fourier Transforms: Sine Wave

$$
x(t)=3 \cos (5 t)
$$

Fourier Transform:

$$
x(t)=3 \cos (5 t)
$$

Square Wave

$$
\begin{aligned}
& x(t)= \begin{cases}5 V & \cos (5 t)>0 \\
0 V & \text { otherwise }\end{cases} \\
& x(t) \approx 2.5+3.18 \cos (5 t)-1.05 \cos (15 t)+0.64 \cos (25 t)+\ldots
\end{aligned}
$$

Triangle Wave

$$
\begin{aligned}
& x(t)=x(t+2) \\
& x(t)=\left\{\begin{array}{cc}
t & 0<t<1 \\
2-t & 1<t<2
\end{array}\right. \\
& x(t)=0.5-0.405 \cos (\pi t)-0.045 \cos (3 \pi t)-0.016 \cos (5 \pi t)+\ldots
\end{aligned}
$$

Half-Rectified Sine Wave

$$
\begin{aligned}
& x(t)=x(t+2 \pi) \\
& x(t)=\left\{\begin{array}{cc}
5 \sin (t) & \sin (t)>0 \\
0 & \text { otherwise }
\end{array}\right. \\
& x(t) \approx 1.591+2.5 \sin (t)-1.061 \cos (2 t)-0.212 \cos (4 t)+\ldots
\end{aligned}
$$

Summary:

If a waveform is periodic in time T ,
It can be expressed as a sum of sine waves.

This allows us to use superposition to analyze the circuit for the given input without resorting to approximations.

