ECE 311 - Homework \#3

Phasors (review)

1) Find Y as a complex number

$$
Y=\left(\frac{50 s+3}{(s+2)(s+5)}\right)_{s=-1+j 2}
$$

2) Find Y as a compex number

$$
Y=\left(\frac{200}{s^{3}+6 s^{2}+8 s+50}\right)_{s=-3+j 4}
$$

3) Express $y(t)$ in phasor form
a) $y(t)=3 \cos (10 t)+7 \sin (10 t)$
b) $y(t)=-2 \cos (50 t)+200 \sin (50 t)$
c) $y(t)=20 \sin (30 t)$
4) Determine the phasor impedance of the following
a) 10 mH inductor operating at 100 Hz
b) $\quad 10 \mathrm{mH}$ inductor operating at 1000 Hz
c) $\quad 0.1 \mathrm{uF}$ capacitor operating at 100 Hz
d) $\quad 0.1 \mathrm{uF}$ capacitor operating at 1000 Hz
5) Assume Vin contains a DC and $16 \mathrm{~Hz}(100 \mathrm{rad} / \mathrm{sec})$ signal:

$$
V_{i n}=10+3 \sin (100 t)
$$

- a) Determine the impedances of the inductor, capacitor, and resistor at DC and $100 \mathrm{rad} / \mathrm{sec}$
- b) Determine the voltage, V2, using phasor analysis
- c) Check your answer using PartSim (or similar program)

6) Assume Vin contains a DC and 160 Hz signal:

$$
V_{i n}=5+3 \sin (1000 t)
$$

- a) Determine the impedances of the inductor, capacitor, and resistor at DC and $1000 \mathrm{rad} / \mathrm{sec}$
- b) Determine the voltage, V2, using phasor analysis

Problem 5\&6:

