ECE 311 - Homework \#18

State variable Solution

Problem 1-3) For the following circuit

Problem 1: Assume

- $\mathrm{V} 0=0 \mathrm{~V}$
- $\mathrm{v} 1(0)=\mathrm{v} 2(0)=\mathrm{v} 3(0)=10 \mathrm{~V}$.

Find the voltage at $\mathrm{v} 3(\mathrm{t})$.

- Express the dynamics in state-variable form.
- Place in matrix (state-variable) form
- Find the transfer function from V0 to V3

Problem 2: Assume V3(t) = 10V. What initial condition makes the voltages decay

- As slow as possible?
- As fast as possible?

Problem 3-5: Assume vin $(\mathrm{t})=0$.

Problem 3: Assume

- $\mathrm{i} 1(0)=\mathrm{i} 3(0)=2 \mathrm{~A}$.
- $\mathrm{v} 2(0)=\mathrm{v} 4(0)=10 \mathrm{~V}$.
i) Write the dynamics for this system (i.e. the voltage node equations using LaPlace notation
ii) Place in matrix form.
iii) Find $y(t)$ (matlab plot is OK)

Problem 4: Assume v4(0) = 10 .

- What initial coniditons on $\mathrm{i} 1(0)$, $\mathrm{v} 2(0)$, and $\mathrm{i} 3(0)$ result in $\mathrm{v} 4(\mathrm{t})$ decaying as slow as possible?
- Find $\mathrm{y}(\mathrm{t})$ for these initial coniditons.

Problem 5: Assume v4 $(0)=10$.

- What initial coniditons on i1(0), v2(0), and i3(0) result in v4(t) decaying as fast as possible?
- Find $\mathrm{v} 4(\mathrm{t})$ for these initial coniditons.

