Phasors and Complex Numbers

Introduction

If you have a DC signal feeding a circuit, a single number can be used to describe the circuit. For example, consider the following circuit:

Voltage Divider: $\mathrm{Y}=0.6 \mathrm{X}$
From before, the output by voltage division is

$$
\begin{aligned}
& Y=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) X \\
& Y=\left(\frac{600}{600+400}\right) X \\
& Y=0.6 \cdot X
\end{aligned}
$$

A good way to describe this circuit is to say it has a gain of 0.6 : the output is 0.6 of the input.

If you change the circuit to be a capacitor and $\mathrm{X}(\mathrm{t})$ to be a sinusoid, however, the input / output relationship becomes a little more complicated

If the input is a $628 \mathrm{rad} / \mathrm{sec}$ sine wave, it is also a 100 Hz sine wave

$$
\begin{aligned}
& \omega=2 \pi f \\
& f=\frac{\omega}{2 \pi}=\frac{628}{2 \pi}=100 \mathrm{~Hz}
\end{aligned}
$$

The period is 10 ms

$$
T=\frac{1}{f}=\frac{1}{100 \mathrm{~Hz}}=0.01 \mathrm{sec}
$$

If the input is sine wave, starting at $\mathrm{t}=0$, with an amplitude of 100 V , then

$$
x(t)=100 \sin (628 t)
$$

The output, however, is different than the input by both amplitude as well as a phase shift.

$$
y(t)=37 \sin \left(628 t-67^{0}\right)
$$

You likewise need two numbers to describe this circuit

- An amplitude which tells you how much the signal is amplified, and
- An angle which tells you the phase shift of this circuit.

Complex numbers are a way to determine both of these with a single number.

Complex Numbers

Let

$$
j=\sqrt{-1}
$$

Any given number can then have a real and a complex part

$$
x=a+j b
$$

You can express this number in rectangular form $(a+j b)$ or polar form
$x=c \angle \theta$

Complex Number $(a+j b)$ can also be expressed as $(c \angle \theta)$

When you add complex numbers, the rectangular form is more convenient: the real part adds and the complex part adds.

$$
\left(a_{1}+j b_{1}\right)+\left(a_{2}+j b_{2}\right)=\left(a_{1}+a_{2}\right)+j\left(b_{1}+b_{2}\right.
$$

When you multiply complex numbers, polar form is more convenient: the amplitudes multiply, the angles add:

$$
\left(c_{1} \angle \theta_{1}\right)\left(c_{2} \angle \theta_{2}\right)=c_{1} c_{2} \angle\left(\theta_{1}+\theta_{2}\right.
$$

Complex numbers let you express sine and cosine with a single number as well. The complex exponential is

$$
e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)
$$

If you multiply by a complex number

$$
\begin{aligned}
(a+j b) \cdot e^{j \omega t}= & (a+j b) \cdot(\cos (\omega t)+j \sin (\omega t)) \\
& =(a \cos (\omega t)-b \sin (\omega t))+j(-)
\end{aligned}
$$

Taking the real part you get

$$
a+j b \Rightarrow a \cos (\omega t)-b \sin (\omega t)
$$

The complex number $\mathbf{a}+\mathbf{j b}$ represents a sine wave:

- The real part is the cosine term
- The complex part is the -sine term

With complex exponential, you can represent both sine and cosine with a single (complex) number.

Complex Impedance's

The impedance is the relationship between current and voltage. For a resistor

$$
V=I R
$$

The impedance of a resistor is R .

The impedance of a capacitor and inductor is a little trickier. First, assume all functions are of the form

$$
x(t)=a \cdot e^{j \omega t}
$$

where 'a' could be complex. The VI characteristics for a capacitor is

$$
I=C \frac{d V}{d t}
$$

If

$$
V(t)=v_{0} e^{j \omega t}
$$

then

$$
\begin{aligned}
& \frac{d V}{d t}=j \omega \cdot v_{0} e^{j \omega t} \\
& \frac{d V}{d t}=j \omega \cdot V
\end{aligned}
$$

Then

$$
\begin{aligned}
& I=C \cdot j \omega \cdot V \\
& V=\left(\frac{1}{j \omega C}\right) I
\end{aligned}
$$

The complex impedance of a capacitor is $\left(\frac{1}{j \omega C}\right)$

The impedance of an inductor is from

$$
V=L \frac{d I}{d t}
$$

Assuming current is of the form

$$
I=i_{0} \cdot e^{j \omega t}
$$

then

$$
V=L \cdot j \omega \cdot I
$$

The complex impedance of an inductor is $j \omega L$

This lets you analyze any RLC circuit the same way you analyzed a resistor circuit - only the impedance's will be complex numbers.

Example 1: RC Circuit

Determine $\mathrm{y}(\mathrm{t})$ for the following circuit:

Step 1: Replace the capacitor with its complex impedance. Since the input is $628 \mathrm{rad} / \mathrm{sec}$, that's the frequency you care about

$$
\begin{aligned}
& \omega=628 \mathrm{rad} / \mathrm{sec} \\
& Z_{c}=\frac{1}{j \omega C}=-j 159 \Omega
\end{aligned}
$$

Step 2: Solve just like you did with a DC circuit, only with complex numbers

$$
\begin{aligned}
& Y=\left(\frac{-j 159}{-j 159+400}\right) X \\
& Y=\left(0.37 \angle-68^{0}\right) \cdot 100 \sin (628 t) \\
& y(t)=37 \sin \left(100 t-68^{0}\right)
\end{aligned}
$$

In MATLAB:

```
>> C = 10e-6;
>> w = 628;
>> Zc = 1 / (j*W*C)
0-159.24i
>> Gain = Zc / (400 + Zc)
    0.1368 - 0.3436i
>> X = 0 - j*100; // x(t) = 100 sin(628t)
>> Y = Gain * X
-34.3632 -13.6796i
```

meaning

$$
y(t)=-34.3632 \cos (628 t)+13.6796 \sin (628 t)
$$

which is the rectangular form of $\mathrm{y}(\mathrm{t})$.

If you prefer polar form:

```
>> abs(Y)
    36.9860
>> angle(Y)*180/pi
-158.2930
    y(t)=36.986 cos (628t-1580}
```

In PartSim (www.PartSim.com)
Input the circuit using drag and drop

Make the input a sine wave with

- no DC offset
- 100 V amplitude
- 100 Hz

Enable DC Voltage DC Voltage			\square			
			1.0			
Enable AC:			\square			
AC Magnitude:			1.0			
AC Phase:			0			
Transient Source:						
None	Sine	Pulse	Exponential	FM	AM	Noise
Offset:			0			
Amplitude:			100			
Frequency:			100 Hz			
Delay:			0.05			
Damping Factor:			0.0			

Run a transient response for

- 30ms (3 cycles)
- 10us step size

This results in a simulated input and output waveform:

Note from the PartSim plot, the output after a short transient is

- 39 Vp (as calculated)
- Delayed by 68 degrees from the input (as calculated)

To calculate the delay, use the following procedure:

- One cycle is 360 degrees or four divisions
- The output has zero crossings delayed by 0.8 divisions.

The phase shift is thus

$$
\left(\frac{0.8 \mathrm{div}}{4 \text { div }}\right) 360^{0}=72^{0} \quad \text { (actually } 68 \text { degrees but it's hard to read a graph that accurately) }
$$

Negative phase shift is a delay.

Example 2: 3-Stage RC Circuit

Find the voltages for the following circuit when the input is

$$
x(t)=100 \cos (2 t)
$$

Step 1: Change the capacitors to their complex impedance (shown in red)

$$
\omega=2
$$

$0.01 \mathrm{~F}: Z_{c}=\frac{1}{j \omega C}=-j 50 \Omega$
0.02F: $Z_{c}=\frac{1}{j \omega C}=-j 25 \Omega$
$0.03 \mathrm{~F}: Z_{c}=\frac{1}{j \omega C}=-j 16.67 \Omega$

Step 2: Write N equations for N unknowns
V1: $\quad\left(\frac{V_{1}-X}{100}\right)+\left(\frac{V_{1}}{150}\right)+\left(\frac{V_{1}}{-j 50}\right)+\left(\frac{V_{1}-V_{2}}{200}\right)=0$
V2: $\quad\left(\frac{V_{2}-V_{1}}{200}\right)+\left(\frac{V_{2}}{250}\right)+\left(\frac{V_{2}}{-j 25}\right)+\left(\frac{V_{2}-V_{3}}{300}\right)=0$
V3: $\quad\left(\frac{V_{3}-V_{2}}{300}\right)+\left(\frac{V_{3}}{350}\right)+\left(\frac{V_{3}}{-j 16.67}\right)=0$

Step 3: Solve.
First, group terms

$$
\begin{aligned}
& \left(\frac{1}{100}+\frac{1}{150}+\frac{1}{-j 50}+\frac{1}{200}\right) V_{1}+\left(\frac{-1}{200}\right) V_{2}=\left(\frac{1}{100}\right) X \\
& \left(\frac{-1}{200}\right) V_{1}+\left(\frac{1}{200}+\frac{1}{250}+\frac{1}{-j 25}+\frac{1}{300}\right) V_{2}+\left(\frac{-1}{300}\right) V_{3}=0 \\
& \left(\frac{-1}{300}\right) V_{2}+\left(\frac{1}{300}+\frac{1}{350}+\frac{1}{-j 16.67}\right) V_{3}=0
\end{aligned}
$$

Place in matrix form

$$
\left[\begin{array}{ccc}
\left(\frac{1}{100}+\frac{1}{150}+\frac{1}{-j 50}+\frac{1}{200}\right) & \left(\frac{-1}{200}\right) & 0 \\
\left(\frac{-1}{200}\right) & \left(\frac{1}{200}+\frac{1}{250}+\frac{1}{-j 25}+\frac{1}{300}\right) & \left(\frac{-1}{300}\right) \\
0 & \left(\frac{-1}{300}\right) & \left(\frac{1}{300}+\frac{1}{350}+\frac{1}{-j 16.67}\right)
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{100}\right) \\
0 \\
0
\end{array}\right] \geq
$$

Put into MATLAB and solve

```
>> a11 = 1/100 + 1/150 - 1/(j*50) + 1/200;
>> a12 = -1/200;
>> a13 = 0;
>> a21 = -1/200;
>> a22 = 1/200 + 1/250 -1/(j*25) + 1/300;
>> a23 = -1/300;
>> a31 = 0;
>> a32 = -1/300;
>> a33 = 1/300+1/350-1/(j*16.67);
>> A = [a11,a12,a13;a21,a22,a23;a31,a32,a33]
    0.0217 + 0.0200i - - 0.0050 r 0.0123 + 0.0400i r -0.0033 
>> B = [1/100;0;0]
        0.0100
            0
>> V = inv(A)*B*X
    24.2853 -23.2416i
    -1.7971 - 3.5726i
    -0.2066 + 0.0785i
```

meaning

$$
\begin{aligned}
& V_{1}(t)=24.28 \cos (2 t)+23.24 \sin (2 t) \\
& V_{2}(t)=-1.79 \cos (2 t)+3.57 \sin (2 t) \\
& V_{1}(t)=0.21 \cos (2 t)+0.08 \sin (2 t)
\end{aligned}
$$

If you prefer polar representation:

```
>>abs(V)
    33.6147
    3.9991
    0.2210
>> angle(V)*180/pi
    -43.7420
-116.7040
    159.1878
```

meaning

$$
\begin{aligned}
& V_{1}(t)=33.61 \cos \left(2 t-43.7^{0}\right) \\
& V_{2}(t)=3.999 \cos \left(2 t-116.7^{0}\right) \\
& V_{3}(t)=0.22 \cos \left(2 t+159.2^{0}\right)
\end{aligned}
$$

PartSim Simulation

Transient Response of Vin (blue), V1 (black), V2 (green), and V3 (orange)
Note that V1 has

- A peak of 33.686 V (vs. 33.61 V computed)
- A delay of

$$
\left(\frac{0.4 \text { div }}{3.2 \text { div }}\right) 360^{0}=45^{0} \quad(\text { vs. } 43.7 \text { degrees computed })
$$

Likewise, V2 and V3 match our calculations

	Vin	V1	V2	V3
Calculated	100 V	33.61 V	3.999 V	220 mV
PartSim	100 V	33.678 V	4.233 V	592 mV

