Transfer Functions and Forced Response

Background

Given a dynamic system (i.e. a system which is described by a differential equation),

the method you use to find the output depends upon the input:

- If the input is a sinusoid, use phasor analysis.
- If the input is periodic in time T, use Fourier transforms.
- If the input is non-periodic and causal (zero for $\mathrm{t}<0$), use LaPlace transforms.

Transfer Functions

Assume you have a dynamic system

$$
y^{\prime \prime \prime}+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=b_{2} x^{\prime \prime}+b_{1} x^{\prime}+b_{0} x
$$

Also assume that $\mathrm{x}(\mathrm{t})$ is zero for $\mathrm{t}<0$. In this case, the initial conditions will all be zero, making the LaPlace transform

$$
\left(s^{3}+a_{2} s^{2}+a_{1} s+a_{0}\right) Y=\left(b_{2} s^{2}+b_{1} s+b_{0}\right) X
$$

Solving for Y

$$
Y=\left(\frac{b_{2} s^{2}+b_{1} s+b_{0}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}\right) X
$$

or

$$
Y=G(s) X
$$

where $\mathrm{G}(\mathrm{s})$ is called the Transfer Function from X to Y

Note that the fundamental assumption behind LaPlace transforms is that all functions are in the form of

$$
y(t)=a \cdot e^{s t}
$$

When you differentiate, you get

$$
\frac{d y}{d t}=s \cdot a e^{s t}=s Y
$$

so the notation 'sY' can be read as 'the derivative of y'. A 3rd-order transfer function in 's' means you are looking at a 3 rd-order differential equation.

Step Response

Given a dynamic system

$$
Y=G(s) \cdot X
$$

if $\mathrm{x}(\mathrm{t})$ is causal (zero for $\mathrm{t}<0$), then you can solve for $\mathrm{y}(\mathrm{t})$ by

- Finding $X(s)$, the LaPlace transform for $x(t)$,
- Multiply $\mathrm{G}(\mathrm{s})$ by $\mathrm{X}(\mathrm{s})$ to find $\mathrm{Y}(\mathrm{s})$, then
- Taking the inverse-LaPlace transform to find $\mathrm{y}(\mathrm{t})$.

Example 1: Find $\mathrm{y}(\mathrm{t})$ assuming x and y are related by

$$
Y=\left(\frac{3}{s+2}\right) X
$$

and

$$
x(t)=u(t)
$$

Solution: Take the LaPlace transform of $\mathrm{x}(\mathrm{t})$

$$
X(s)=\left(\frac{1}{s}\right)
$$

Find $\mathrm{Y}(\mathrm{s})$

$$
Y=\left(\frac{3}{s+2}\right)\left(\frac{1}{s}\right)
$$

Take the inverse-LaPlace transform

$$
\begin{aligned}
& Y=\left(\frac{3}{s(s+2)}\right)=\left(\frac{a}{s}\right)+\left(\frac{b}{s+2}\right) \\
& a=\left(\frac{3}{(s+2)}\right)_{s \rightarrow 0}=1.5 \\
& b=\left(\frac{3}{s}\right)_{s \rightarrow-2}=-1.5
\end{aligned}
$$

so

$$
Y=\left(\frac{1.5}{s}\right)+\left(\frac{-1.5}{s+2}\right)
$$

and

$$
y(t)=\left(1.5-1.5 e^{-2 t}\right) u(t)
$$

Checking your answer in Matlab:

```
t = [0:0.01:5]';
G = tf(3,[1,2])
    3
-----
s + 2
y = step(G,t);
y1 = 1.5 - 1.5*exp(-2*t);
N = [1:10:length(t)]';
plot(t,y,'-',t(N),yl(N),'r+')
```


Step Response Computed in Matlab (blue) and by hand (red)

Note that the first term is also the phasor solution for a DC input

$$
\begin{aligned}
& x(t)=1 \\
& Y(j \omega)=G(j \omega) \cdot X(j \omega) \\
& Y(j 0)=G(j 0) \cdot X(j 0) \\
& Y=\left(\frac{3}{s+2}\right)_{s=0} \cdot 1 \\
& Y=1.5
\end{aligned}
$$

Phasors tell you the steady-state solution (they assume the input has been on for all time).
LaPlace transforms tell you

- The steady-state solution (as time goes to infinity), and
- The transient solution (how you go from zero at $\mathrm{t}=0$ to the steady-state solution).

So,

- Phasors are actually a special case of LaPlace transforms, and
- You can use LaPlace transforms to find the steady-state solution, but it's a lot harder.

Example 2: Find $\mathrm{y}(\mathrm{t})$ given

$$
\begin{aligned}
& Y=\left(\frac{2 s+100}{s^{3}+7 s^{2}+20 s+50}\right) X \\
& x(t)=u(t)
\end{aligned}
$$

Solution: Take the LaPlace transform for $\mathrm{x}(\mathrm{t})$

$$
X=\frac{1}{s}
$$

Find $\mathrm{Y}(\mathrm{s})$

$$
Y=\left(\frac{2 s+100}{s^{3}+7 s^{2}+20 s+50}\right)\left(\frac{1}{s}\right)
$$

find $y(t)$

$$
\begin{aligned}
& Y(s)=\left(\frac{2 s+100}{s(s+1+j 3)(s+1-j 3)(s+5)}\right) \\
& Y(s)=\left(\frac{2 s+100}{s(s+1+j 3)(s+1-j 3)(s+5)}\right)=\left(\frac{a}{s}\right)+\left(\frac{b}{s+1+j 3}\right)+\left(\frac{c}{s+1-j 3}\right)+\left(\frac{d}{s+5}\right) \\
& a=\left(\frac{2 s+100}{(s+1+j 3)(s+1-j 3)(s+5)}\right)_{s=0}=2 \\
& b=\left(\frac{2 s+100}{s(s+1-j 3)(s+5)}\right)_{s=-1-j 3}=1.0349 \angle-128.2^{0} \\
& c=\left(\frac{2 s+100}{s(s+1-j 3)(s+5)}\right)_{s=-1+j 3}=1.0349 \angle 128.2^{0} \\
& d=\left(\frac{2 s+100}{s(s+1+j 3)(s+1-j 3)}\right)_{s=-5}=-0.72
\end{aligned}
$$

so

$$
Y(s)=\left(\frac{2}{s}\right)+\left(\frac{1.0349 \angle-128.2^{0}}{s+1+j 3}\right)+\left(\frac{1.0349 \angle 128.2^{0}}{s+1-j 3}\right)+\left(\frac{-0.72}{s+5}\right)
$$

and

$$
y(t)=\left(2+2.0699 e^{-t} \cos \left(3 t+128.2^{0}\right)-0.72 e^{-5 t}\right) u(t)
$$

Checking in Matlab

```
G = tf([2,100],[1,7,20,50])
    2s+100
s^3+7ss^2 + 20s + 50
```

```
t = [0:0.01:5]';
y = step(G,t);
y1 = 2 + 2.0699*exp(-t) .* cos(3*t + 2.238) - 0.72*exp(-5*t);
N = [1:10:length(t)]';
plot(t,y,'-',t(N),y1(N),'r+')
```


Step Response Computed in Matlab (blue) and by hand (red)

Again, the steady-state solution is also the phasor solution. At DC

$$
\begin{aligned}
& Y(j 0)=\left(\frac{2 s+100}{s^{3}+7 s^{2}+20 s+50}\right)_{s=0} \cdot X(j 0) \\
& Y=2 \cdot 1
\end{aligned}
$$

The steady-state solution (as time goes to infinity) is

$$
y(t)=2
$$

Response for Other Inputs:

Find $y(t)$ for

$$
\begin{aligned}
& Y=\left(\frac{3}{s+2}\right) X \\
& x(t)=\cos (4 t) u(t)
\end{aligned}
$$

Solution: Find the LaPlace transform for $\mathrm{x}(\mathrm{t})$

$$
X(s)=\left(\frac{0.5}{s+j 4}\right)+\left(\frac{0.5}{s-j 4}\right)
$$

Putting over a common denominator

$$
\begin{aligned}
& X(s)=\left(\frac{0.5}{s+j 4}\right)\left(\frac{s-j 4}{s-j 4}\right)+\left(\frac{0.5}{s-j 4}\right)\left(\frac{s+j 4}{s+j 4}\right) \\
& X(s)=\left(\frac{s}{s^{2}+16}\right)
\end{aligned}
$$

Find $\mathrm{Y}(\mathrm{s})$

$$
\begin{aligned}
& Y=\left(\frac{3}{s+2}\right) X \\
& Y=\left(\frac{3}{s+2}\right)\left(\frac{s}{s^{2}+16}\right)
\end{aligned}
$$

Find $y(t)$

$$
\begin{aligned}
& Y=\left(\frac{3 s}{(s+2)(s+j 4)(s-j 4)}\right)=\left(\frac{a}{s+2}\right)+\left(\frac{b}{s+j 4}\right)+\left(\frac{c}{s-j 4}\right) \\
& a=\left(\frac{3 s}{(s+j 4)(s-j 4)}\right)_{s=-2}=-0.300 \\
& b=\left(\frac{3 s}{(s+2)(s-j 4)}\right)_{s=-j 4}=0.3354 \angle 63.43^{0} \\
& c=\left(\frac{3 s}{(s+2)(s+j 4)}\right)_{s=j 4}=0.3354 \angle-63.43^{0}
\end{aligned}
$$

so

$$
Y=\left(\frac{-0.300}{s+2}\right)+\left(\frac{0.3354 \angle 63.43^{0}}{s+j 4}\right)+\left(\frac{0.3354 \angle-63.43^{0}}{s-j 4}\right)
$$

and

$$
y(t)=\left(-0.3 e^{-2 t}+0.6708 \cos \left(4 t-63.43^{0}\right)\right) u(t)
$$

Checking in Matlab: Matlab has a step function but it doesn't have a response to a $4 \mathrm{rad} / \mathrm{sec}$ cosine input function. We can still use impulse however.

```
Y = zpk(0,[-2,j*4,-j*4],3)
    s s
    ----------------
    (s+2) (s^2 + 16)
t = [0:0.01:5]';
y = impulse(Y,t);
y1 = -0.3*exp(-2*t) + 0.6708* cos(4*t - 1.107);
t2 = [-1:0.01:5]';
x = cos(4*t2) .* (t2>0);
plot(t,y,'-',t(N),y1(N),'r+',t2,x,'m')
```


Input, $x(t)$ (pink) and output as computed in matlab (blue) and by hand (red)

Note that since $\mathrm{x}(\mathrm{t})=0$ for $\mathrm{t}<0$, there is jump at $\mathrm{t}=0$. Also note that the steady-state solution matches what you compute using phasor analysis. At all frequencies,

$$
Y=\left(\frac{3}{s+2}\right) X
$$

Using phasor analysis at $4 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& Y=\left(\frac{3}{s+2}\right)_{s=j 4} \cdot(1+j 0) \\
& Y=0.6708 \angle-63.4^{0}
\end{aligned}
$$

which is phasor form for

$$
y(t)=0.6708 \cos \left(4 t-63.4^{0}\right)
$$

Again, phasor analysis tells you the steady-state portion of the solution of

$$
y(t)=\left(-0.3 e^{-2 t}+0.6708 \cos \left(4 t-63.43^{0}\right)\right) u(t)
$$

