Inductors and Capacitors in the LaPlace Domain

Inductors

From before, the VI characteristics for an inductor are

$$
v(t)=L \frac{d i(t)}{d t}
$$

The LaPlace transform is

$$
V=L \cdot(s I-i(0))
$$

Voltages in series add, meaning this is the series connection of two elements: an impedance (Ls) and a voltage source ($-\mathrm{L} \mathrm{i}(0)$):

$$
V=L s \cdot I-L i(0)
$$

This results in the Thevenin equivalent for an inductor. The Norton equivalent is then

$$
\begin{aligned}
& I_{n}=\frac{V_{t h}}{R_{t h}} \\
& I_{n}=\frac{L i(0)}{L s} \\
& I_{n}=\frac{i(0)}{s}
\end{aligned}
$$

Note that

- The series model is more useful when writing current loop equations
- The parallel model is more useful when writing voltage node equations.

Both models are valid, however.

Example 1: Determine the voltages for the following circuit. Assume
$v_{\text {in }}(t)=\left\{\begin{array}{cc}5 V & t<0 \\ 10 V & t>0\end{array}\right.$

Solution: First, find the currents at $\mathrm{t}=0$. Using phasor analysis, the inductors become

$$
L \rightarrow j \omega L=0
$$

For $\mathrm{t}<0$, this results in

$$
\begin{aligned}
& v_{1}=v_{2}=5 \mathrm{~V} \\
& i_{2}=\frac{5 \mathrm{~V}}{200 \Omega}=25 \mathrm{~mA} \\
& i_{1}=\frac{5 \mathrm{~V}}{100 \Omega}+i_{2}=75 \mathrm{~mA}
\end{aligned}
$$

Now, take the LaPlace transform. Assuming we're going to be using current loops, use the series model for the inductors.

$$
v_{\text {in }} \rightarrow \frac{10}{s}
$$

$$
\begin{aligned}
0.1 H & \rightarrow 0.1 s-0.1 \cdot i_{1}(0) \\
& \rightarrow 0.1 s-0.0075
\end{aligned}
$$

$$
\begin{aligned}
0.2 H & \rightarrow 0.2 s-0.2 \cdot i_{2}(0) \\
& \rightarrow 0.2 s-0.005
\end{aligned}
$$

Writing the current loop equations:

$$
\begin{aligned}
& -\frac{10}{s}+0.1 s \cdot I_{1}-0.0075+100\left(I_{1}-I_{2}\right)=0 \\
& 100 \cdot\left(I_{2}-I_{1}\right)+0.2 s \cdot I_{2}-0.005+200 \cdot I_{2}=0
\end{aligned}
$$

The parallel model (for voltage nodes) would be

with the voltage node equations being

$$
\begin{aligned}
& V_{0}=\frac{10}{s} \\
& \left(\frac{V_{1}-V_{0}}{0.1 s}\right)-\left(\frac{0.075}{s}\right)+\left(\frac{V_{1}}{100}\right)+\left(\frac{0.025}{s}\right)+\left(\frac{V_{1}-V_{2}}{0.2 s}\right)=0 \\
& \left(\frac{V_{2}-V_{1}}{0.2 s}\right)+\left(\frac{V_{2}}{200}\right)-\left(\frac{0.025}{s}\right)=0
\end{aligned}
$$

Capacitors

From before, the VI characteristics for a capacitor is

$$
i(t)=C \frac{d v}{d t}
$$

Taking the LaPlace transform

$$
\begin{aligned}
& I(s)=C \cdot(s V-v(0)) \\
& I(s)=C s V-C v(0)
\end{aligned}
$$

Solving for V

$$
V=\left(\frac{1}{C s}\right) I+v(0)
$$

This gives the series (Thevenin) model for a capacitor. The parallel model has

$$
I_{\text {short }}=\frac{V_{t h}}{R_{t h}}=\frac{v(0)}{1 / C s}=\operatorname{Csv}(0)
$$

[^0]LaPlace Domain

Note that

- The series model is more useful when writing current loop equations
- The parallel model is more useful when writing voltage node equations.

Example: Convert the following circuit to the LaPlace domain and write the voltage node and current loop equations.

$$
v_{\text {in }}(t)=\left\{\begin{array}{cc}
5 V & t<0 \\
10 V & t>0
\end{array}\right.
$$

Solution: First find the initial conditions. For $\mathrm{t}<0$, the voltage is a constant (5 V). Using phasor analysis,

$$
\begin{aligned}
& C \rightarrow \frac{1}{j \omega C}=\infty \\
& V_{1}=V_{2}=5 V
\end{aligned}
$$

For the series (Thevenin) model, you have a voltage source with

$$
V_{t h}=v(0)=5
$$

For the parallel (Norton) model, you have a current source with

$$
I_{N}=\frac{V_{t h}}{R_{t h}}=\frac{v(0)}{1 / C s}=C \cdot v(0) \cdot s
$$

Series Model for $\mathrm{t}>0$:

The current loop equations are then:

$$
\begin{aligned}
& -\frac{10}{s}+100 I_{1}+\left(\frac{100}{s}\right)\left(I_{1}-I_{2}\right)+5=0 \\
& -5+\left(\frac{100}{s}\right)\left(I_{2}-I_{1}\right)+200 I_{2}+\left(\frac{50}{s}\right) I_{2}+5=0
\end{aligned}
$$

Parallel Model for $\mathrm{t}>0$:

the voltage node equations become

$$
\begin{aligned}
& V_{0}=\frac{10}{s} \\
& \left(\frac{V_{1}-V_{0}}{100}\right)-0.05 s+\left(\frac{V_{1}}{100 / s}\right)+\left(\frac{V_{1}-V_{2}}{200}\right)=0 \\
& \left(\frac{V_{2}-V_{1}}{200}\right)-0.1 s+\left(\frac{V_{2}}{50 / s}\right)=0
\end{aligned}
$$

[^0]: Time Domain

