
Inductors and Capacitors in the LaPlace Domain

Inductors

From before, the VI characteristics for an inductor are

v(t) = L
di(t)

dt

The LaPlace transform is

V = L ⋅ (sI − i(0))

Voltages in series add, meaning this is the series connection of two elements: an impedance ( Ls ) and a

voltage source  ( - L i(0) ):

V = Ls ⋅ I − Li(0)

i(t)

+

-

v(t)

+

-

Ls

L i(0)

Ls i(0)
s

Time Domain LaPlace Domain

Series Model

(Thevenin Equivalent)
Parallel Model

( Norton Equivalent )

I(s)
I(s)

+

-

V(s)

+

-

V(s)

This results in the Thevenin equivalent for an inductor.  The Norton equivalent is then

In =
Vth

Rth

In =
L⋅i(0)

Ls

In =
i(0)

s

Note that

The series model is more useful when writing current loop equations

The parallel model is more useful when writing voltage node equations.

Both models are valid, however.
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Example 1:  Determine the voltages for the following circuit.  Assume

v in(t) =





5V t < 0

10V t > 0

+

-
Vin(t)

0.1H 0.2H

100 200

i1(t) i2(t)

V1 V2V0

Solution:  First, find the currents at t = 0.  Using phasor analysis, the inductors become

L → jωL = 0

For t<0, this results in

v1 = v2 = 5V

i2 =
5V

200Ω
= 25mA

i1 =
5V

100Ω
+ i2 = 75mA

Now, take the LaPlace transform.  Assuming we're going to be using current loops, use the series model for

the inductors.

v in →
10
s

0.1H → 0.1s − 0.1 ⋅ i1(0)

→ 0.1s − 0.0075

0.2H → 0.2s − 0.2 ⋅ i2(0)

→ 0.2s − 0.005
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+

-
10/s

0.1s 0.2s

100 200

V1 V2V0
+-

0.0075

+-

0.005

I1 I2

Writing the current loop equations:

−
10
s + 0.1s ⋅ I1 − 0.0075 + 100(I1 − I2) = 0

100 ⋅ (I2 − I1) + 0.2s ⋅ I2 − 0.005 + 200 ⋅ I2 = 0

The parallel model (for voltage nodes) would be

+

-
10/s 100 200

V1 V2V0

0.1s
0.2s

0.075 / s 0.025 / s

with the voltage node equations being

V0 =
10
s




V1−V0

0.1s

 − 

0.075
s

 + 

V1

100

 + 

0.025
s

 + 

V1−V2

0.2s

 = 0




V2−V1

0.2s

 + 

V2

200

 − 

0.025
s

 = 0
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Capacitors

From before, the VI characteristics for a capacitor is

i(t) = C
dv

dt

Taking the LaPlace transform

I(s) = C ⋅ (sV − v(0))

I(s) = CsV − Cv(0)

Solving for V

V = 


1

Cs


 I + v(0)

This gives the series (Thevenin) model for a capacitor.  The parallel model has

Ishort =
Vth

Rth
=

v(0)

1/Cs
= Csv(0)

i(t)+

-

v(t)

+

-

1 / Cs

v(0)

Time Domain LaPlace Domain

Series Model

(Thevenin Equivalent)
Parallel Model

( Norton Equivalent )

I(s)

I(s)

+

-

V(s)

+

-

V(s)

1 / Cs Cs v(0)

Note that

The series model is more useful when writing current loop equations

The parallel model is more useful when writing voltage node equations.
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Example:  Convert the following circuit to the LaPlace domain and write the voltage node and current loop

equations.

v in(t) =





5V t < 0

10V t > 0

+

-
Vin(t)

V1 V2V0

100 200

0.01F 0.02F

Solution:  First find the initial conditions.  For t<0, the voltage is a constant (5V).  Using phasor analysis,

C →
1

jωC
= ∞

V1 = V2 = 5V

For the series (Thevenin) model, you have a voltage source with

V th = v(0) = 5

For the parallel (Norton) model, you have a current source with

IN =
Vth

Rth
=

v(0)

1/Cs
= C ⋅ v(0) ⋅ s
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Series Model for t > 0:  

+

-

V1 V2V0

100 200

100
s

50
s

+

-
5

+

-
5

I1 I210
s

The current loop equations are then:

−
10
s + 100I1 + 

100
s

 (I1 − I2) + 5 = 0

−5 + 
100

s

 (I2 − I1) + 200I2 + 

50
s

 I2 + 5 = 0

Parallel Model for t > 0:

+

-

V1 V2V0

100 200

100
s

50

s0.05s 0.1s10

s

the voltage node equations become

V0 =
10
s




V1−V0

100

 − 0.05s + 

V1

100/s

 + 

V1−V2

200

 = 0




V2−V1

200

 − 0.1s + 

V2

50/s

 = 0
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