Voltage Nodes in the LaPlace Domain

Note: The parallel model for inductors and capacitors work better when writing voltage node equations.
Example 1: Find V2(t) for the following circuit. Assume

$$
v_{\text {in }}(t)= \begin{cases}5 V & t<0 \\ 0 V & t>0\end{cases}
$$

From before, the current at $\mathrm{t}=0$ is

$$
\begin{aligned}
& i_{1}(0)=75 m A \\
& i_{2}(0)=25 m A
\end{aligned}
$$

The parallel model (for voltage nodes) would be

with the voltage node equations being

$$
\begin{aligned}
& \left(\frac{V_{1}}{0.1 s}\right)-\left(\frac{0.075}{s}\right)+\left(\frac{V_{1}}{100}\right)+\left(\frac{0.025}{s}\right)+\left(\frac{V_{1}-V_{2}}{0.2 s}\right)=0 \\
& \left(\frac{V_{2}-V_{1}}{0.2 s}\right)+\left(\frac{V_{2}}{200}\right)-\left(\frac{0.025}{s}\right)=0
\end{aligned}
$$

Grouping terms to solve for V2(s)

$$
\begin{align*}
& \left(\frac{1}{0.1 s}+\frac{1}{100}+\frac{1}{0.2 s}\right) V_{1}-\left(\frac{1}{0.2 s}\right) V_{2}=\left(\frac{0.05}{s}\right) \tag{1}\\
& -\left(\frac{1}{0.2 s}\right) V_{1}+\left(\frac{1}{0.2 s}+\frac{1}{200}\right) V_{2}=\left(\frac{0.025}{s}\right) \tag{2}
\end{align*}
$$

Solve: Method \#1: Gauss elimination

$$
\begin{aligned}
& a V_{1}-b V_{2}=c \\
& -b V_{1}+d V_{2}=e
\end{aligned}
$$

* b
* a

$$
\begin{aligned}
& \left(-b^{2}+a d\right) V_{2}=b c+a e \\
& V_{2}=\left(\frac{b c+a e}{a d-b^{2}}\right)
\end{aligned}
$$

Plugging back in the values of (a, b, c, d, e)

$$
V_{2}=\left(\frac{\left(\frac{1}{0.2 s}\right)\left(\frac{0.05}{s}\right)+\left(\frac{1}{0.15}+\frac{1}{100}+\frac{1}{0.2 s}\right)\left(\frac{0.025}{s}\right)}{\left(\frac{1}{0.15}+\frac{1}{100}+\frac{1}{0.2 s}\right)\left(\frac{1}{0.2 s}+\frac{1}{200}\right)-\left(\frac{1}{0.2 s}\right)^{2}}\right)
$$

Simplify (30 minutes later....)

$$
V_{2}=\left(\frac{5(s+2500)}{(s+500)(s+2000)}\right)
$$

Method \#2: State Space. Place the system in the form of

$$
\begin{aligned}
& s X=A X+B U \\
& Y=C X+D U
\end{aligned}
$$

Rewrite equations (1) and (2)

$$
\begin{align*}
& (0.01 s+15) V_{1}-(5) V_{2}=(0.05) \tag{1}\\
& -(5) V_{1}+(0.005 s+5) V_{2}=(0.025) \tag{2}
\end{align*}
$$

Solve for the highest derivative

$$
\begin{align*}
& s V_{1}=-1500 V_{1}+500 V_{2}+5 \tag{1}\\
& s V_{2}=1000 V_{1}-1000 V_{2}+5 \tag{2}
\end{align*}
$$

Place in matrix form (note: $\mathrm{U}(\mathrm{s})=1$, meaning the input is a delta function for this circuit)

$$
\begin{aligned}
& {\left[\begin{array}{l}
s V_{1} \\
s V_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1500 & 500 \\
1000 & -1000
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]+\left[\begin{array}{l}
5 \\
5
\end{array}\right]} \\
& Y=V_{2}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]+[0]
\end{aligned}
$$

Place in Matlab

```
A = [-1500,500;1000,-1000]
B = [5;5]
C = [0,1]
D = 0;
G = ss(A,B,C,D);
zpk(G)
V2(s) = --- 5 (s+2500)
```

To find $\mathrm{v} 2(\mathrm{t})$, take the inverse-LaPlace transform

$$
\begin{aligned}
& V_{2}=\left(\frac{5(s+2500)}{(s+500)(s+2000)}\right)=\left(\frac{6.667}{s+500}\right)+\left(\frac{-1.667}{s+2000}\right) \\
& v_{2}(t)=\left(6.667 e^{-500 t}-1.667 e^{-2000 t}\right) u(t)
\end{aligned}
$$

Checking in PartSim: Input the circuit with the input being a pulse source

Run a transient simulation:

This matches up with the Matlab solution

$$
\begin{aligned}
& t=[0: 0.0001: 0.01]^{\prime} ; \\
& y=\text { impulse(} ; ~ t) ; \\
& \text { plot }(t, y) ;
\end{aligned}
$$

Voltage Nodes with Capacitors

Example 2: Find v2(t) assuming

$$
v_{\text {in }}(t)= \begin{cases}5 V & t<0 \\ 0 V & t>0\end{cases}
$$

Solution: Find the initial conditions. Capacitors are open circuits at DC, resulting in

$$
v_{1}(0)=v_{2}(0)=5 V
$$

Convert to LaPlace using the parallel model

Write the voltage node equations

$$
\begin{align*}
& \left(\frac{V_{1}}{100}\right)-0.05 s+\left(\frac{V_{1}}{100 / s}\right)+\left(\frac{V_{1}-V_{2}}{200}\right)=0 \tag{1}\\
& \left(\frac{V_{2}-V_{1}}{200}\right)-0.01 s+\left(\frac{V_{2}}{50 / s}\right)=0 \tag{2}
\end{align*}
$$

Simplify and group terms

$$
(0.01 s+0.015) V_{1}-(0.005) V_{2}=0.05 s
$$

$$
(-0.005) V_{1}+(0.02 s+0.005) V_{2}=0.1 s
$$

Solve: Method \#1: Gauss Elimination. Express this as

$$
\begin{array}{ll}
a V_{1}-b V_{2}=c & * \mathrm{~b} \\
-b V_{1}+d V_{2}=e & * \mathrm{a}
\end{array}
$$

add the two equations

$$
\begin{aligned}
& \left(-b^{2}+a d\right) V_{2}=b c+a e \\
& V_{2}=\left(\frac{b c+a e}{a d-b^{2}}\right)
\end{aligned}
$$

Substituting in for ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$)

$$
V_{2}=\left(\frac{(0.005)(0.05 s)+(0.01 s+0.015)(0.1 s)}{(0.01 s+0.015)(0.02 s+0.005)-(0.005)^{2}}\right)
$$

Method \#2: State Space. Rewrite (1) and (2) as

$$
\begin{aligned}
& s V_{1}=-15 V_{1}+0.5 V_{2}+5 s \\
& s V_{2}=0.25 V_{1}-0.25 V_{2}+5 s
\end{aligned}
$$

Place in matrix form

$$
\begin{aligned}
& {\left[\begin{array}{l}
s V_{1} \\
s V_{2}
\end{array}\right]=\left[\begin{array}{cc}
-15 & 0.5 \\
0.25 & -0.25
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]+\left[\begin{array}{l}
5 \\
5
\end{array}\right] s} \\
& Y=V_{2}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]+[0]
\end{aligned}
$$

Place in Matlab

```
A = [-15,0.5 ; 0.25,-0.25];
B = [5;5];
C = [0,1];
D = 0;
G = ss(A,B,C,D);
zpk(G)
5 (s+15.25)
G= -------------------
```

This is the impulse response $(\mathrm{U}(\mathrm{s})=1)$. We want $\mathrm{U}(\mathrm{s})=\mathrm{s}$, so multiply by ' s '

Capacitors

From before, the VI characteristics for a capacitor is

$$
i(t)=C \frac{d v}{d t}
$$

Taking the LaPlace transform

$$
\begin{aligned}
& I(s)=C \cdot(s V-v(0)) \\
& I(s)=C s V-C v(0)
\end{aligned}
$$

Solving for V

$$
V=\left(\frac{1}{C s}\right) I+v(0)
$$

This gives the series (Thevenin) model for a capacitor. The parallel model has

$$
I_{\text {short }}=\frac{V_{t h}}{R_{t h}}=\frac{v(0)}{1 / C s}=\operatorname{Csv}(0)
$$

[^0]LaPlace Domain

Note that

- The series model is more useful when writing current loop equations
- The parallel model is more useful when writing votlage node equations.

Example: Convert the following circuit to the LaPlace domain and write the voltage node and current loop equations.

$$
v_{\text {in }}(t)=\left\{\begin{array}{cc}
5 V & t<0 \\
10 V & t>0
\end{array}\right.
$$

Solution: First find the initial conditions. For $\mathrm{t}<0$, the voltage is a constant (5 V). Using phasor analysis,

$$
\begin{aligned}
& C \rightarrow \frac{1}{j \omega C}=\infty \\
& V_{1}=V_{2}=5 V
\end{aligned}
$$

For the series (Thevenin) model, you have a voltage source with

$$
V_{t h}=v(0)=5
$$

For the parallel (Norton) model, you have a current source with

$$
I_{N}=\frac{V_{t h}}{R_{t h}}=\frac{v(0)}{1 / C s}=C \cdot v(0) \cdot s
$$

Series Model for $\mathrm{t}>0$:

The current loop equations are then:

$$
\begin{aligned}
& -\frac{10}{s}+100 I_{1}+\left(\frac{100}{s}\right)\left(I_{1}-I_{2}\right)+5=0 \\
& -5+\left(\frac{100}{s}\right)\left(I_{2}-I_{1}\right)+200 I_{2}+\left(\frac{50}{s}\right) I_{2}+5=0
\end{aligned}
$$

Parallel Model for $\mathrm{t}>0$:

the voltage node equations become

$$
\begin{aligned}
& V_{0}=\frac{10}{s} \\
& \left(\frac{V_{1}-V_{0}}{100}\right)-0.05 s+\left(\frac{V_{1}}{100 / s}\right)+\left(\frac{V_{1}-V_{2}}{200}\right)=0 \\
& \left(\frac{V_{2}-V_{1}}{200}\right)-0.1 s+\left(\frac{V_{2}}{50 / s}\right)=0
\end{aligned}
$$

[^0]: Time Domain

