Current Loops in the LaPlace Domain

Note: The parallel model for inductors and capacitors work better when writing voltage node equations.
Example 1: Find V2(t) for the following circuit. Assume

$$
v_{\text {in }}(t)= \begin{cases}5 V & t<0 \\ 0 V & t>0\end{cases}
$$

From before, the current at $\mathrm{t}=0$ is

$$
\begin{aligned}
& i_{1}(0)=75 m A \\
& i_{2}(0)=25 m A
\end{aligned}
$$

The series model (for current loops) would be

with the current loop equations being

$$
\begin{aligned}
& 0.1 s I_{1}-0.0075+100\left(I_{1}-I_{2}\right)=0 \\
& 100\left(I_{2}-I_{1}\right)+0.2 s I_{2}-0.005+200 I_{2}=0
\end{aligned}
$$

Group terms and simplify

$$
\begin{array}{ll}
(0.1 s+100) I_{1}-(100) I_{2}=0.0075 & * 100 \\
-(100) I_{1}+(0.2 s+300) I_{2}=0.005 & *(0.1 s+100)
\end{array}
$$

Solve (using Gauss Elimination)
add

$$
\begin{aligned}
& \left(-100^{2}+(0.2 s+300)(0.1 s+100)\right) I_{2}=0.75+0.005(0.1 s+100) \\
& I_{2}=\left(\frac{0.0005 s+1.25}{0.02 s^{2}+50 s+20000}\right)
\end{aligned}
$$

Taking the inverse LaPlace transform

$$
\begin{aligned}
& I_{2}=\left(\frac{0.025 s+62.5}{(s+500)(s+2000)}\right)=\left(\frac{0.0333}{s+500}\right)+\left(\frac{-0.00833}{s+2000}\right) \\
& i_{2}(t)=\left(0.0333 e^{-500 t}-0.008333 e^{-2000 t}\right) u(t)
\end{aligned}
$$

Example 2: Capacitors: Find i2(t) assuming

$$
v_{\text {in }}(t)= \begin{cases}5 V & t<0 \\ 0 V & t>0\end{cases}
$$

From before, the initial conditions are

$$
v_{1}(t)=v_{2}(t)=5 V
$$

Using the series model for a capacitor

Write the loop equations

$$
\begin{align*}
& 100 I_{1}+\left(\frac{100}{s}\right)\left(I_{1}-I_{2}\right)+5=0 \tag{1}\\
& -5+\left(\frac{100}{s}\right)\left(I_{2}-I_{1}\right)+200 I_{2}+\left(\frac{50}{s}\right) I_{2}+5=0 \tag{2}
\end{align*}
$$

Group terms and simplify

$$
\begin{array}{ll}
(100 s+100) I_{1}-100 I_{2}=-5 s & * 100 \\
-100 I_{1}+(200 s+150) I_{2}=0 & *(100 s+100)
\end{array}
$$

Solve for I2
add

$$
\begin{aligned}
& \left(-100^{2}+(200 s+150)(100 s+100)\right) I_{2}=-500 s \\
& I_{2}=\left(\frac{-500 s}{20000 s^{2}+35000 s+5000}\right) \\
& I_{2}=\left(\frac{-0.025}{s^{2}+1.75 s+0.25}\right)=\left(\frac{-0.025}{(s+0.1569)(s+1.5931)}\right)=\left(\frac{-0.0174}{s+0.1569}\right)+\left(\frac{0.0174}{s+1.5931}\right)
\end{aligned}
$$

Taking the inverse LaPlace transform

$$
i_{2}(t)=\left(-0.0174 e^{-0.1569 t}+0.0174 e^{-1.5931 t}\right) u(t)
$$

