State Variables in the LaPlace Domain

There's actually an easier way to write the equations for RLC circuits. Express the system in state-space form

$$
\begin{aligned}
& s X=A X+B U \\
& Y=C X+D U
\end{aligned}
$$

Let the states be the terms that define the energy in the system

- currents for inductors
- voltages for capacitors

If you have N energy storage elements, you have N states. To determine (A, B), determine the

- current to capacitors $\left(i=C \frac{d v}{d t}\right)$
- voltages across inductors $\left(v=L \frac{d i}{d t}\right)$
in terms of the states.

Example 1: Determine $\mathrm{v} 4(\mathrm{t})$ for the following circuit assuming

$$
v_{\text {in }}(t)= \begin{cases}5 V & t<0 \\ 0 V & t>0\end{cases}
$$

Step 1: Determine the initial conditions. Capacitors are open circuits at DC and inductors are shorts at DC. This results in

$$
\begin{aligned}
& i_{1}(0)=i_{3}(0)=0 A \\
& v_{2}(0)=v_{4}(0)=5 V
\end{aligned}
$$

Step 2: There are 4 energy storage elements (capacitors and inductors). There are 4 state variables. Define these to be

$$
X=\left[\begin{array}{l}
I_{1} \\
V_{2} \\
I_{3} \\
V_{4}
\end{array}\right]
$$

Write 4 coupled differential equations for this circuit

$$
\begin{aligned}
& v_{1}=L_{1} \frac{d i_{1}}{d t}=V_{0}-0.2 I_{1}-V_{2} \\
& i_{2}=C_{2} \frac{d v_{2}}{d t}=I_{1}-I_{3} \\
& v_{3}=L_{3} \frac{d i_{3}}{d t}=V_{2}-0.3 I_{3}-V_{4} \\
& i_{4}=C_{4} \frac{d v_{4}}{d t}=I_{3}
\end{aligned}
$$

Take the LaPlace transform

$$
\begin{aligned}
& L_{1}\left(s I_{1}-i_{1}(0)\right)=V_{0}-0.2 I_{1}-V_{2} \\
& C_{2}\left(s V_{2}-v_{2}(0)\right)=I_{1}-I_{3} \\
& L_{3}\left(s I_{3}-i_{3}(0)\right)=V_{2}-0.3 I_{3}-V_{4} \\
& C_{4}\left(s V_{4}-v_{4}(0)\right)=I_{3}
\end{aligned}
$$

Solve for the highest derivative

$$
\begin{aligned}
& s I_{1}=2 V_{0}-0.4 I_{1}-2 V_{2}+i_{1}(0) \\
& s V_{2}=10 I_{1}-10 I_{3}+v_{2}(0) \\
& s I_{3}=5 V_{2}-1.5 I_{3}-5 V_{4}+i_{3}(0) \\
& s V_{4}=4 I_{3}+v_{4}(0)
\end{aligned}
$$

Place in matrix form

$$
\begin{aligned}
& {\left[\begin{array}{c}
s I_{1} \\
s V_{2} \\
s I_{3} \\
s V_{4}
\end{array}\right]=\left[\begin{array}{cccc}
-0.4 & -2 & 0 & 0 \\
10 & 0 & -10 & 0 \\
0 & 5 & -1.5 & -5 \\
0 & 0 & 4 & 0
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2} \\
I_{3} \\
V_{4}
\end{array}\right]+\left[\begin{array}{l}
i_{1}(0) \\
v_{2}(0) \\
i_{3}(0) \\
v_{4}(0)
\end{array}\right]} \\
& Y=V_{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2} \\
I_{3} \\
V_{4}
\end{array}\right]+[0]
\end{aligned}
$$

Place in Matlab. Note that the B matrix is just the initial conditions.

```
A = [-0.4,-2,0,0 ; 10,0,-10,0 ; 0,5,-1.5,-5 ; 0,0,4,0 ]
    -0.4000 
B = [0 ; 5 ; 0 ; 5]
    0
    5
    0
    5
C = [0,0,0,1];
D = 0;
G = ss(A,B,C,D);
zpk(G)
V4(s) = - 5 (s+0.646) ( s^2 + 1.254s+89.79)
```

The inverse LaPlace transform is then

```
t = [0:0.0001:10]';
y = impulse(Y,t);
plot(t,y);
```


Example 2: Sometimes the circuit is difficult to solve. In that case do a typical engineering solution:

- Change the problem so that it's solvable (or easier to solve), but
- Make sure the changes don't change the flavor of the problem

Find V4(t):

This problem is actually hard due to the constraint that $\mathrm{I} 1=\mathrm{I} 2+\mathrm{I} 3$. The problem is there isn't a capacitor at the middle node. So... add a capacitor there. Just make it small so it doesn't change much

Now write 5 coupled differential equations

$$
\begin{aligned}
& v_{1}=L_{1} \frac{d i_{1}}{d t}=V_{i n}-10 I_{1}-V_{5} \\
& v_{2}=L_{2} \frac{d i_{2}}{d t}=V_{5} \\
& v_{3}=L_{3} \frac{d i_{3}}{d t}=V_{5}-20 I_{3}-V_{4} \\
& i_{4}=C_{4} \frac{d v_{4}}{d t}=I_{3} \\
& i_{5}=C_{5} \frac{d v_{5}}{d t}=I_{1}-I_{2}-I_{3}
\end{aligned}
$$

Take the LaPlace transform (note that $\operatorname{Vin}(\mathrm{t})=0)$

$$
\begin{aligned}
& s I_{1}=-20 I_{1}-2 V_{5}+i_{1}(0) \\
& s I_{2}=10 V_{5}+i_{2}(0) \\
& s I_{3}=5 V_{5}-100 I_{3}-5 V_{4}+i_{3}(0) \\
& s V_{4}=4 I_{3}+v_{4}(0) \\
& s V_{5}=1000 I_{1}-1000 I_{2}-1000 I_{3}+v_{5}(0)
\end{aligned}
$$

Place in matrix form.

$$
\begin{aligned}
& {\left[\begin{array}{l}
s I_{1} \\
s I_{2} \\
s I_{3} \\
s V_{4} \\
s V_{5}
\end{array}\right]=\left[\begin{array}{ccccc}
-10 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 10 \\
0 & 0 & -100 & -5 & 5 \\
0 & 0 & 4 & 0 & 0 \\
1000 & -1000 & -1000 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3} \\
V_{4} \\
V_{5}
\end{array}\right]+\left[\begin{array}{l}
i_{1}(0) \\
i_{2}(0) \\
i_{3}(0) \\
v_{4}(0) \\
v_{5}(0)
\end{array}\right]} \\
& Y=V_{4}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3} \\
V_{4} \\
V_{5}
\end{array}\right]+[0]
\end{aligned}
$$

Solve in Matlab. Note that the initial condition is

$$
\left[\begin{array}{c}
i_{1}(0) \\
i_{2}(0) \\
i_{3}(0) \\
v_{4}(0) \\
v_{5}(0)
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

```
A = [-10,0,0,0,-2 ; 0,0,0,0,10 ; 0,0,-100,-5,5 ; 0,0,4,0,0 ;
1000,-1000,-1000,0,0]
A =
\begin{tabular}{rrrrr}
-10 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 10 \\
0 & 0 & -100 & -5 & 5 \\
0 & 0 & 4 & 0 & 0 \\
1000 & -1000 & -1000 & 0 & 0
\end{tabular}
```

```
B = [0. 5;0;0;0;0]
```

B = [0. 5;0;0;0;0]
B =

```


The time response is
```

t = [0:0.001:5]';
y = impulse(G, t);
plot(t,y);

```
```

