Active Filters with Real Poles

RLC filters work on paper. In practice, the inductors cause major problems due to their resisance. The 10 H inductors from Digikey, for example, have a resistance of 278 Ohms. This is a problem with you want the resistance to be only 10 Ohms.

If you use op-amps, you can

- Get real and complex poles without using inductors, and
- The gain can be anything you want: more than one, less than one, positive, or negative.

Single-Pole Active Filter

There are several designs for a single-pole active low-pass filter. The one I like is:

$$
\text { Active Low-Pass Filter: } Y=-\left(\frac{\left(\frac{1}{R_{c}}\right)}{s+\left(\frac{1}{R_{1} c}\right)}\right) X=-\left(\frac{a}{s+b}\right) X
$$

The gain can be found several ways. Using voltage nodes,

$$
\begin{aligned}
& V_{+}=V_{-}=0 V \\
& \left(\frac{0-X}{R_{2}}\right)+\left(\frac{0-Y}{1 / C s}\right)+\left(\frac{0-Y}{R_{1}}\right)=0
\end{aligned}
$$

Grouping terms

$$
\begin{aligned}
& \left(C s+\frac{1}{R_{1}}\right) Y=-\left(\frac{1}{R_{2}}\right) X \\
& \left(R_{1} R_{2} C s+R_{2}\right) Y=-\left(R_{1}\right) X \\
& Y=\left(\frac{-R_{1}}{R_{1} R_{2} C s+R_{2}}\right) X
\end{aligned}
$$

or

$$
Y=-\left(\frac{\left(\frac{1}{R_{2} C}\right)}{s+\left(\frac{1}{R_{1} C}\right)}\right) X=-\left(\frac{a}{s+b}\right) X
$$

If you forget the transfer function, just take the limits.
By inspection, this is a 1st-order low pass filter of the form

$$
Y=-\left(\frac{a}{s+b}\right) X
$$

At DC, the capacitor is an open circuit. The gain is then

$$
\left(\frac{R_{1}}{R_{2}}\right)=\left(\frac{a}{b}\right)
$$

The pole is when you switch from resistive to capacitive in the feedback

$$
\begin{aligned}
& R_{1}=\left(\frac{1}{C s}\right)_{s=j b} \\
& b=\left(\frac{1}{R_{1} C}\right)^{2}
\end{aligned}
$$

With this circuit, you can implement any transfer function with

- Real poles, and
- No zeros.

Example: Design a circuit to implement

$$
Y=\left(\frac{-200}{(s+2)(s+5)(s+10)}\right) X
$$

Solution: Break this into three sections

$$
Y=\left(\frac{-2}{s+2}\right)\left(\frac{-5}{s+5}\right)\left(\frac{-20}{s+10}\right) X
$$

Stage 1: (black)
Let R1 $=100 \mathrm{k}$
The DC gain is 1.000 , so $\mathrm{R} 2 / \mathrm{R} 1=1 . \mathrm{R} 2=100 \mathrm{k}$.

The pole is at -2

$$
\begin{aligned}
& \frac{1}{R_{1} C}=2 \\
& C=5 \mu F
\end{aligned}
$$

Checking this design in PartSim: first input the circuit:

then take the frequency response

Doing a point check vs. our calculations at 1 Hz (selected somewhat arbitrarily)

$$
\left(\frac{-200}{(s+2)(s+5)(s+10)}\right)_{s=j 2 \pi}=0.3198 \angle 24^{0}
$$

This matches PartSim's result (319.824 mV vs. 0.3198 V)

Circuit 2:

Another solutionis to add an amplifier to a 3-stage RC filter:

$$
Y \approx\left(\left(\frac{2}{s+2}\right)\left(\frac{5}{s+5}\right)\left(\frac{10}{s+10}\right) \cdot 2\right) X
$$

To avoid loading, increase the impedance of each stage by $10 x$.
Pick C so that $1 / R C$ is the pole

