
Active Filters with Complex Poles

Complex Poles, No Zeros

+

-
R R

C C

R2 R1

Y

X V2 V3

V1

          Y =





k⋅
1

RC




2

s
2+

3−k

RC


 s+

1

RC




2




X k = 1 +

R1

R2

To find the transfer function, write the voltage node equations
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Solving (about 40 minutes later) you get

Y =





k⋅
1

RC




2

s
2+

3−k

RC


 s+

1

RC




2




X

where

k = 1 +
R1

R2

This filter has two complex poles with
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Amplitude =  
1

RC

Angle: 3 − k = 2 cos θ

DC gain k = 
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
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Note that the angle of the poles goes from

0 degrees when k =1

90 degrees when k = 3 (an oscillator)
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k = 3

Example: 3rd Order LPF.   Design a circuit to implement
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Rewrite this as
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Use the previous filters 

NDSU Active Filters with Complex Poles ECE 311

JSG 2 July 11, 2018



C C

R1

R R

R2

Y

C0

R0









1

R0C0




s+



1

R0C0













k⋅
1

RC




2

s
2+

3−k

RC


 s+

1

RC




2






To avoid loading, let

R0 = 10k

R = 100k

Matching terms in the denominator: 

                   



1

R0C0
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 = 85 C0 = 1.17µF
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3 − k = 2 cos (69.50)

k = 2.3

1 +
R2

R1
= 2.3

R1 = 100k,     R2 = 1.3k

Note:  This circuit has a DC gain of 2.3 (instead of 1.0).   

Option 1:  Call the output 2.3Y

Option 2:  Reduce the gain by 2.3x to bring the DC gain back to 1.00

The former solution is usually the better solution.  Presumably, your circuit will need some gain anyway - this

filer provides 2.3x of the gain.  The remaining gain comes from some other circuit.

The latter solution is usually better on tests where you want to answer the problem exactly to get full credit.
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To attenuate the gain, use a Thevenin equivalent:
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To find Ra and Rb:

Ra Rb = 10k
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Solving
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making the final circuit:
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Complex Poles, One Zeros at s = 0:  Y = 
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To derive this transfer function, write the voltage node equations

node equation at YVB = 0

node equation at A
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Solving ( about 40 minutes later ) gives
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Example:  Design a filter to implement

Y = 
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Solution:  There are 3 constraints and 4 degrees of freedom.  Something is arbitrary, so let

C = 1µF

Now match terms
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R3 = 1M
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