Butterworth and Chebuchev Filters

When designing a filter, you

- Place N poles near the region you want to pass, and
- Place zeros near the regions you want to reject.

Butterworth filters are a special case where you have

- N poles,
- No zeros, and
- The maximum gain must be less than 1.000 (no resonance)

Type-1 Chebychev filters loosen this up a little and have

- N poles,
- No zeros, and
- The maximum gain must be less than $1 + \varepsilon$ (a slight resonance)

Butterworth Filters

As it turns out, the optimal filter (i.e. the closest to an ideal low-pass filter) with

- N poles
- No zeros, and
- No resonance (max gain ≤ 1.0000)

has N poles with

- The amplitude of the poles is equal to the corner frequency, and
- The angle between the poles is

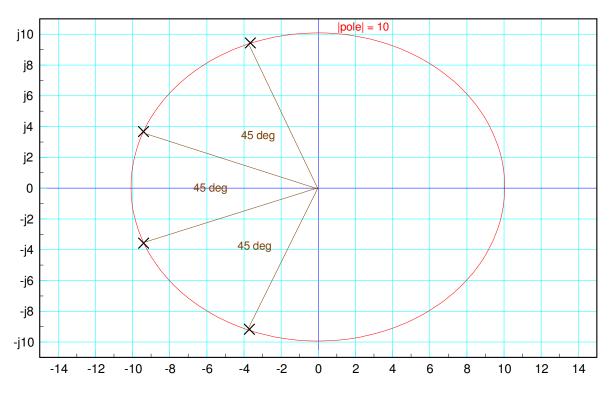
$$\mathbf{\phi} = \frac{180^0}{N}$$

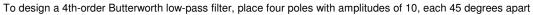
If the corner is 1 rad/sec, for example, the poles for a Butterworth filter are

Ν	2	3	4	5
poles	$-1 \angle \pm 45^{\circ}$	-1	$-1 \angle \pm 22.5^{\circ}$	-1
		$-1 \angle \pm 60^{\circ}$	$-1 \angle \pm 67.5^{\circ}$	$-1 \angle \pm 36^{\circ}$
				$-1 \angle \pm 72^{\circ}$

Example: Design a 4th-order Butterworth low-pass filter with a corner at 10 rad/sec.

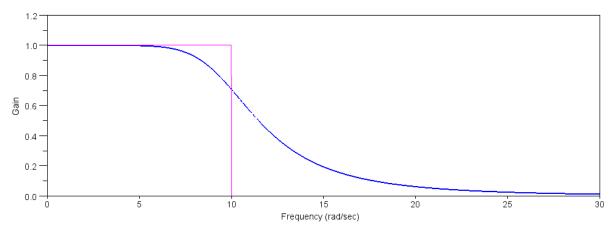
Solution: The poles are 45 degrees apart


$$\phi = \frac{180^0}{4} = 45^0$$


The amplitude of the poles is the corner frequency (10 rad/sec). Hence

$$G(s) = \left(\frac{10^4}{(s+10\angle 22.5^0)(s+10\angle -22.5^0)(s+10\angle 67.5^0)(s+10\angle -67.5^0)}\right)$$

or since complex poles are always in complex conjugate pairs,


$$G(s) = \left(\frac{10^4}{(s+10\angle \pm 22.5^0)(s+10\angle \pm 67.5^0)}\right)$$

The resulting gain vs. frequency is then

```
p1 = 10 * exp(j*22.5*pi/180);
p2 = conj(p1);
p3 = 10 * exp(j*67.5*pi/180);
p4 = conj(p3);
w = [0:0.01:30]';
s = j*w;
Gd = 1 * (w < 10);
Gs = 10^4 ./ ( (s+p1) .* (s+p2) .* (s+p3) .* (s+p4) );
plot(w,abs(Gs),'b',w,abs(Gd),'m');
xlabel('Frequency (rad/sec)');
ylabel('Gain');
```


Gain vs. Frequency for a 4th-Order Butterworth Low-Pass Filter

Chebuchev Filters

A Chebuchev filter is similar to a Butterworth filter, except you allow the gain to be slightly larger than one at some point. In return, you get a filter which is closer to ideal.

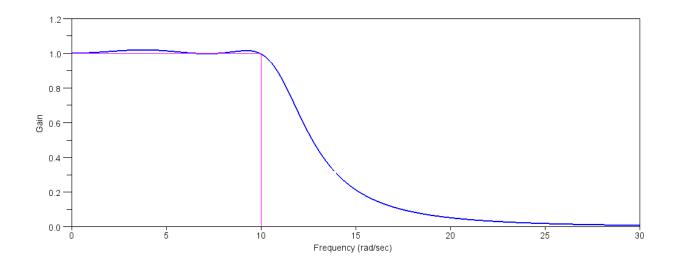
Unlike a Butterworth filter, there are an infinite number of Chebychev filters: one for each resonance you allow. The poles for a Type-1 Chebychev filter with a corner at 1 rad/sec follow and 0.2 ripple are given below.

	N=2	N=3	N=4	N=5	N=6
zeros	none	none	none	none	none
poles	$-1.60 \angle \pm 50.7^{\circ}$	-0.85	$-0.72 \angle \pm 38.5^{\circ}$	-0.48	$-0.47 \angle \pm 36.1^{\circ}$
		$-1.21 \angle \pm 69.5^{\circ}$	$-1.11 \angle \pm 77.8^{\circ}$	$-0.76 \angle \pm 59.3^{\circ}$	$-0.81 \angle \pm 69.8^{\circ}$
				$-1.06 \angle \pm 82.0^{\circ}$	$-1.04 \angle \pm 84.4^{\circ}$

Example: Design a 4th-order Chebuchev filter with

- A DC gain of 1.000
- A ripple of 0.2, and
- A corner at 10 rad/sec

Solution:


$$G(s) = \left(\frac{7.2^2 \cdot 11.1^2}{\left(s + 7.2 \angle \pm 38.5^0\right)\left(s + 11.1 \angle \pm 77.8^0\right)}\right)$$

or

$$G(s) = \left(\frac{6387}{\left(s^2 + 11.27s + 51.84\right)\left(s^2 + 4.69s + 123.21\right)}\right)$$

Checking the gain vs. frequency in Matlab

```
p1 = 7.2 * exp(j*38.5*pi/180);
p2 = conj(p1);
p3 = 11.1 * exp(j*77.8*pi/180);
p4 = conj(p3);
w = [0:0.01:30]';
s = j*w;
Gd = 1 * (w < 10) .* (w > -10);
Gs = 7.2^2 * 11.1^2 ./ ( (s+p1) .* (s+p2) .* (s+p3) .* (s+p4) );
plot(w,abs(Gs),'b',w,abs(Gd),'m');
xlabel('Frequency (rad/sec)');
ylabel('Gain');
```


Gain vs. Frequency for a 4th-Order Chebychev Filter with a Corner at 10 rad/sec