
Properties of Fourier Transforms

Background

Assume x(t), y(t), and their Fourier transforms

x(t) = Σ Xne jnω0t

y(t) = Σ Yne jnω0t

Linearity:

If you multiply x(t) by a constant, its Fourier coefficients are multiplied by the same constant

a ⋅ x(t) = Σ aXne jnω0t

If you add two functions, the Fourier coefficients add

x(t) + y(t) = Σ Xne jnω0t + Σ Yne jnω0t

= Σ (Xn + Yn)e jnω0t

Delay

If x(t) is delayed by time T, Xn is multiplied by e−nω0T

e−sT ⋅ x(t) = e−sT ⋅ Σ Xne jnω0t

= Σ Xn ⋅ e−sT ⋅ e jnω0t

= Σ Xn ⋅ e−nω0T ⋅ e jnω0t

Differentiation:

dx

dt
= d

dt
(Σ Xne jnω0t)

= Σ Xn ⋅ jnω0 ⋅ e jnω0t

= Σ (Xn ⋅ jnω0) ⋅ e jnω0t

Integration:

∫ xdt = ∫ (Σ Xne jnω0t)dt

= Σ 


Xn

jnω0


 e jnω0t

Time Scaling
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x(at) = Σ Xne jnω0at

The Fourier coefficients don't change.  All that changes are the frequencies

ω0 → aω0

Convolution

∫ x(τ)y(t − τ)dτ = ∫ (Σ Xne jnω0τ)(Σ Yne jnω0(t−τ))dτ

Summary

Operation x(t) Xn

amplitude scaling a x(t) Xn → aXn

addition x(t) + y(t) Xn + Yn

delay T seconds x(t-T) Xn → e−jnω0Xn

differentiation ;dx

dt ;Xn → 


1

jnω0


Xn

integration ∫ x ⋅ dt Xn → (jnω0)Xn

With these properties you can derive the Fourier transform for different functions
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Example 1:  Delta Train:

x(t) = x(t + 2π)

x(t) = δ(t) − δ(t − π)

0

pi

2 pi

-pi

-2 pi

The complex Fourier transform for a delta function with a period of  is 2π
1

2π

δ(t) ↔ 1

2π

A delayed delta function becomes

δ(t − π) ↔ e−jnπ ⋅ 
1

2π

 =

(−1)n

2π

Subtracting gives the Fourier transform for x(t)

Xn = 


1−(−1)n

2π



Xn =











1
π

 n odd

0 n even
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Example 2:  Square Wave.  If you integrate the previous function, you get a square wave

y(t) = ∫ x(t)dt =





1 0 < t < π

0 π < t < 2π

0 pi 2 pi-pi-2 pi

+1

The Fourier transform for a square wave is therefore

Yn = 


1

jn


Xn = 


1

jn






1−(−1)n

2π



Yn =











−j

nπ

 n odd

0 n even

This is the same result we got twice before
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Example 3:  Triangle Wave:  If you take the previous square wave,

Remove the DC offset (so the square wave goes from -0.5 to +0.5)

Integrate, and

Multiply by  


2
π



you get a triangle wave

0 pi 2 pi-pi-2 pi

+1

-1

z(t)

z(t) = 32
π ∫ y(t) ⋅ dt

Zn = 


32
π





1

jn


 Yn = 


32
π





1

jn






1−(−1)n

j2nπ



Zn = 16
(−1)n−1

n2π2




Checking in Matlab:

cn = zeros(20,1);
 
for n=1:20
   cn(n) = ((-1)^n - 1) / (n^2 * pi^2);
   end
 
x = 0*t;
 
for n=1:20
   x = x + 2*real(cn(n))*cos(n*t)  -  2*imag(cn(n))*sin(n*t);
   end
 
plot(t,x)

Sum of the first 20 terms of the Fourier series approximation to a triangle wave

Example 4:  Parabolic Sine Wave:  If you integrate a triangle wave, you get parabolas.  Multiply by a constant

to keep the peak-to-peak amplitude equal to one
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0 pi 2 pi-pi-2 pi

+1

-1

p(t)

p(t) = 1
π ∫ z(t) ⋅ dt

Pn = 


1
π





1

jn


 Zn = 


1
π





1

jn






(−1)n−1

2n2π2




Pn = 


(−1)n−1

j2n3π3




Checking in Matlab

cn = zeros(20,1);
for n=1:20
   cn(n) = 16*((-1)^n - 1) / (2*j*n^3 * pi^3);
   end
x = 0*t;
for n=1:20
  x = x + 2*real(cn(n))*cos(n*t)  -  2*imag(cn(n))*sin(n*t);
  end
plot(t,x)

 

Parabolic Sine Wave
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You can also find the Fourier transform for different functions with delays and differentiation.

Example 5:  Find the Fourier Transform for the following function:

-1 0 1 2 3 4 5 6 7
-2

-1

0

1

2

One Cyclex(t)

Solution:  Start taking derivatives until  you get delta functions.  Delta functions are nice since they have a

simple Fourier transform

δ(t) ↔ 


1

2π



A delayed delta function is

δ(t − T) ↔ 


1

2π

 e−jnω0T

So... start taking derivatives.  Note that taking a  derivative is the same as multiplying the Fourier transform by

jnω0

dx

dt
↔ (jnω0)X

Integration (to get back to x(t)) is equivalent to dividing by 

∫ x ⋅ dt ↔ 


1

jnω0


X

Also note that this function has a period of .  Hence2π

ω0 = 2π

T
= 1
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x(t) and its derivatives Complex Fourier Transform

of delta functions

-1 0 1 2 3 4 5 6 7
-2

-1

0

1

2

One Cyclex(t) X0 = 0

-1 0 1 2 3 4 5 6 7
-2

-1

0

1

2

One Cyclex' X1 = 


1

2π





1

jnω0


 (−e−j2nω0 )

-1 0 1 2 3 4 5 6 7
-2

-1

0

1

2

One Cyclex'' X2 = 


1

2π





1

jnω0




2

(1 − e−jnω0 )

This means the complex Fourier transform for x(t) is

X = 


1

2π





1

jnω0


 (−e−j2nω0) + 

1

2π





1

jnω0




2

(1 − e−jnω0)

or since ω0 = 1

X = 


1

2π





1

jn


 (−e−j2n) + 

1

2π





1

jn




2

(1 − e−jn)

Verifying in Matlab:

X = zeros(20,1);
 
for n=1:20
  X(n) = (1/(2*pi)) * (1/(j*n)) * ( - exp(-j*2*n) );
  X(n) = X(n) + (1/(2*pi)) * (1/(j*n))^2 * ( 1 - exp(-j*n) );
  end
 
x = 0*t;
 
for n=1:20
  x = x + 2*real(X(n))*cos(n*t) - 2*imag(X(n))*sin(n*t);
  end
 
plot(t,x)

NDSU Properties of Fourier Transforms ECE 311

JSG 8 June 12, 2018



 

NDSU Properties of Fourier Transforms ECE 311

JSG 9 June 12, 2018


