ECE 320 - Quiz #4 - Name

Clipper - Max/Min - AC to DC Convertyers. September 24, 2015

1) Find V1, R1, V2, and R2 so that the following circuit has approximately the following I/O relationship:

R1	Vz1	R2	Vz2
2000	40	398	8V

P= 285 P= 285

2) Design a clipper circuit so that the output is

$$V_{out} = \begin{cases} +8V & V_{in} > 8V \\ V_{in} & -6V < V_{in < +8V} \\ -6V & V_{in} < -6V \end{cases}$$

3) Determine the voltages for the following max/min circuit. Also determine the function is implementing

V1	V2	Y	funciton: y=f(A,B,C)	
3.3V	5.3V	4V :	J= min (max(A,B), ma	x(B,C))

y= (A+B) (B+C)

4) Determine the maximum of Vout and the peak-to-peak ripple at Vout

max(Vout)	ripple at Vout (peak-to-peak)	
14.3 V	1.797Vpp	
	0	

5) Determine the voltages at V1 and V2

max(V1)	ripple at V1 (peak-to-peak)	ripple at V2 (peak-to-peak)
13.6V	.8985Upp	.olla Vpp

Colbert Bonus! In 2008, an online vote was taken to name a bridge. Just for fun, Steven Colbert asked his viewers to go online and vote "Colbert". In spite of winning fairly, the bridge was named something else. What was this bridge?

- a) The Megyeri Bridge in Budapest, Hungary
- b) The Ambassador Bridge between Detroit and Windsor, Canada
- c) The Isle of Palms bridge in South Carolina
- d) The Wandsworth Bridge in West London, England
- e) 14th Street Bridge, Washington DC

		ě.