ECE 320 - Quiz 5: Name _____

DC to DC Converters, Transistor Switches. October 1st, 2015

1) Design a circuit which converts 20V DC to 5V DC using a transistor, with the output capable of driving 300mA @ 5V. Calculate the efficiency

RL for 300mA	R1	efficiency		
16.67.52	< 14.3k	24,7%		

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

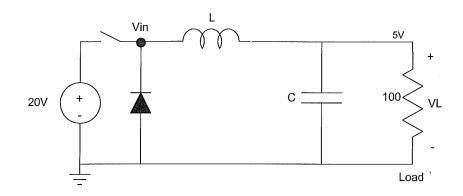
$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV} = 1.5 \text{ m/s}$$

$$P_{us} = 300 \text{ m/s}. \text{ SV}$$

2) The following Buck converter drops 20V down to 5V DC. Assume


$$L = 1H$$

$$C = 0$$

Switching Frequency = 1kHz

Determine the following

On/Off Cycle Time for the switch for $Vo = 5V$	The ripple at the load	efficiency	
5 20	318 mVpp	90.7%	

ripple
$$\approx \left(\frac{100}{100 + jul}\right) 20 \text{Vpp}$$

$$\approx \left(\frac{100}{100 + j \cdot 6283}\right) 20$$

$$\approx 318 \text{Vpp}$$

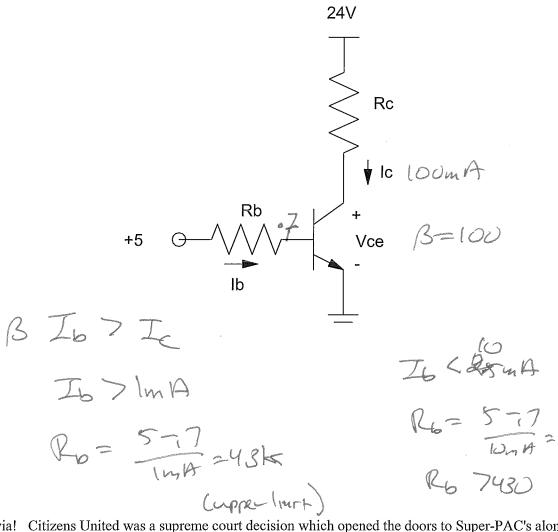
3) The following Buck converter drops 20V down to 5V DC. Assume

$$L = 1H$$

$$C = 10uF$$

Switching Frequency = 1kHz

Determine	e C so that the ripple is 10mV peak-to-peak			
	Ripple for C = 10uF	C for a ripple of 10mVpp		
	49.8mVpp	50uF		
	20V +	$ \begin{array}{c c} \hline & 50.66 & F \\ \hline & 50.66 & F \end{array} $ $ \begin{array}{c c} \hline & 50.66 & F \end{array} $ $ \begin{array}{c c} \hline & 50.66 & F \end{array} $ $ \begin{array}{c c} \hline & 100 & VL \end{array} $		
	8 15.72 100/ - 15.9	Load 20Vpp		
~	100/1-315.9 +j6283			


4) For the following circuit, assume the transistor has a current gain of 100 ($\beta = 100$). Determine the following

Ib	Ic	Vce	Transistor State off / active / saturated
2.15mA	215mA	21.85V	active

5) Modify the following circuit so that the

- Current Ic = 100mA
- Current Ib < 10mA
- · The transistor is saturated

Rb	Rc	Vce
4304.3k	23852	0.20

Colbert Trivia! Citizens United was a supreme court decision which opened the doors to Super-PAC's along with their ability to raise unlimited amounts of money from anonymous donors. What happens to the money in a Super-PAC after the election?

- a) The money becomes the property of the candidate
- b) The money becomes the property of the owner of the Super-PAC
- c) Since the donors are anonymous, the money must be given to charity
- d) The money is confiscated by the Federal Election Commission
- e) The money must be transferred to another active Super-PAC

			\$