ECE 320 - Solution to Homework \#3

Ideal Diode, Light Emitting Diodes. Due monday, September 14th

1) For the following circuit, determine the voltages at each node. Assume ideal silicon diodes.

Assume all diodes on

$$
\begin{aligned}
\mathrm{V} 2 & =0.7 \mathrm{~V} \\
\mathrm{~V} 4 & =0.7 \mathrm{~V} \\
\mathrm{~V} 3 & =1.4 \mathrm{~V}
\end{aligned}
$$

Use voltage nodes to solve for V1

$$
\begin{aligned}
& \left(\frac{V_{1}-10}{1 k}\right)+\left(\frac{V_{1}-0.7}{2 k}\right)+\left(\frac{V_{1}-1.4}{3 k}\right)=0 \\
& \mathrm{~V} 1=5.90 \mathrm{~V}
\end{aligned}
$$

2) Determine the voltages using PartSim (or similar circuit simulator).
3) (Lab) Build this circuit and check your answers.

Problem 1-3)

4) For the following circuit, determine the voltages at each node. Assume ideal silicon diodes.

Assume the top diode is off, the other two are on

$$
\begin{aligned}
& \mathrm{Vc}=0.7 \mathrm{~V} \\
& \mathrm{Vb}=1.4 \mathrm{~V}
\end{aligned}
$$

Solve for Va

$$
\begin{aligned}
& \left(\frac{V_{a}-5}{1 k}\right)+\left(\frac{V_{a}-1.4}{2 k}\right)+\left(\frac{V_{a}-0.7}{3 k}\right)+\left(\frac{V_{a}}{4 k}\right)=0 \\
& V a=2.848 \mathrm{~V}
\end{aligned}
$$

Diode 1 is on, so my assumption was off. Try again with all diodes on

$$
\begin{aligned}
\mathrm{Va} & =2.1 \mathrm{~V} \\
\mathrm{Vb} & =1.4 \mathrm{~V} \\
\mathrm{Vc} & =0.7 \mathrm{~V}
\end{aligned}
$$

Check: the current from Va to the diode is positive

$$
\begin{aligned}
& \left(\frac{5-2.1}{1 k}\right)=I_{d}+\left(\frac{2.1-1.4}{2 k}\right)+\left(\frac{2.1-0.7}{3 k}\right)+\left(\frac{2.1}{4 k}\right) \\
& \mathrm{Id}=1.558 \mathrm{~mA}>0 \mathrm{~mA}
\end{aligned}
$$

5) Determine the voltages using PartSim (or similar circuit simulator).

6) (Lab) Build this circuit and check your answers.

The Piranah RGB LEDs in lab have the followign specifications:
7) Design a circuit to produce yellow light with a 5 V source

- $\operatorname{Red}=255$
- Green $=236$
- Blue $=67$

	Red	Green	Blue
Vf @ 20mA	2.1	3.6	3.6
mcd @ 20mA	8,000	8,000	8,000
Desired mcd	255	236	67
Desired Current (mA)	0.64	0.59	0.17
R	$4,549.02$	$2,372.88$	$8,358.21$

8) Design a circuit to produce NDSU green with a 5 V source

- $\operatorname{Red}=16$
- Green $=64$
- Blue $=0$

	Red	Green	BlueVf
Vf @ 20mA	2.1	3.6	3.6
mcd @ 20mA	8,000	8,000	8,000
Desired mcd	16	64	0.1
Desired Current (mA)	0.04	0.16	0
R	72,500	8,750	$5,600,000$

