ECE 320 - Homework \#6

H-Bridge, DC to AC, SCR. Due Monday, October 5th

1) Design an H -Bridge to drive an 8 -Ohms speaker forward and back.

Input:

- 5 VDC , capable of driving 3A (i.e. DC power supply on lab bench)
- $0 \mathrm{~V} / 5 \mathrm{~V}$ TTL signals capable of driving 25 mA (i.e. switches on the CADET boards)

Output: 8 Ohm Speaker
Relationship: You should be able to apply $+5 \mathrm{~V},-5 \mathrm{~V}$, or 0 V across the speaker by adjusting the switches
Note: The transistors in lab are $\$ 0.05$ each (vs. $\$ 1.00$ for Zetex)

- 3904: NPN, $\beta>100$, Icmax $=200 \mathrm{~mA}$
- 3906: $P N P, \beta>100$, Icmax $=200 \mathrm{~mA}$

Limit the current to 200 mA by adding a $0.5 \mathrm{~W}, 20 \mathrm{Ohm}$ resistor in series with the speaker

Calculations:
NPN

$$
\begin{aligned}
& I_{c}=\frac{5 V}{25 \Omega}=200 \mathrm{~mA} \\
& \beta I_{b}>I_{c}=200 \mathrm{~mA} \\
& I_{b}>2 m A \\
& R_{b}<\frac{5 V-0.7 V}{2 m A}=2150 \Omega
\end{aligned}
$$

Let $\mathrm{Rb}=1 \mathrm{k}$

PNP: (same as above except)

$$
R_{b}<\frac{4.3 V-0 V}{2 m A}=2150 \Omega
$$

Let $\mathrm{Rb}=1 \mathrm{k}$

The voltages and currents expected are then as follows:

2) Check youd design in PartSim (three tests: $0 \mathrm{~V}, 5 \mathrm{~V},-5 \mathrm{~V}$)

Simulated Votlages for +5 (flip left for -5 V)

Simulated 0 V across speaker
3) Assume the H -bridge is to be used to drive an AC motor (BLDC, AC Synchronous, AC Induction motor).

3a) Explain how you convert a DC power supply into an AC voltage
Use an H-Bridge as in problem \#1. Switch between +5 V and -5 V to create an approximate sine wave

3b) Explain how you adjust the speed of the AC motor
Vary the frequency of the sine wave. Frequency = speed
3c) Specify the AC waveform you would send to the motor at 10 Hz

3d) Calculate the efficiency of your DC to AC converter (MATLAB helps here)
First, input the square wave, $\mathrm{Y}(\mathrm{t})$

```
-->t = [0:0.001:1]';
-->Y = 5*(t>1/6).*(t<3/6) -5*(t>4/6);
-->plot(t,Y)
```

The DC term is zero:

```
-->DC = mean(Y)
    - 0.0049950
```

Compute the 1st harmonic
-->w0 = 2*\%pi;
-->a1 = sum(sin(w0*t) .* Y) / sum((sin(w0*t)).^2)
4.7775263
-->b1 = sum(cos(w0*t) .* Y) / sum((cos(w0*t)).^2)

- 2.7494819
meaning

$$
y(t)=0+4.777 \sin \left(\omega_{0} t\right)-2.749 \cos \left(\omega_{0} t\right)+\ldots
$$

The energy in the total signal vs. the 1 st harmonic is:

```
-->y1 = a1*sin(w0*t) + b1*cos(w0*t);
-->plot(t,y1,'r')
-->Pin = mean(Y.^2)
    16.658342
-->Pout = mean(y1 .^ 2)
    15.184579
-->eff = Pout / Pin
    0.9115301
```

The efficiency DC to AC conversion is 91%

Waveform of the signal produced by the H -bridge (blue) and the first term of its Fourier transform
4) Design a full-wave AC to DC converter using diodes and SCRs.

Input: 12 V peak, $60 \mathrm{~Hz}, \mathrm{AC}$ signal capable of driving 1 A
Output: 4.9 V .. 5.1 V DC signal, capable of driving 100 mA
Tolerance: Output ripple $<200 \mathrm{mV}$ @ 100 mA

Assume the turn-on time is 'a'. If the AC signal is 10.6 V peak and the average is to be 5 V , then

$$
\begin{aligned}
& 5=\frac{1}{\pi} \int_{a}^{\pi} 10.6 \sin (t) d t \\
& 0.4717=\frac{1}{\pi} \int_{a}^{\pi} \sin (t) d t \\
& 1.4819=-\left.\cos (t)\right|_{a} ^{\pi} \\
& 1.4819=1+\cos (a) \\
& a=61.19^{0}
\end{aligned}
$$

Checking in MATLAB:

```
-->t = [0:0.001:1]';
-->w0 = 2*%pi;
-->y = abs(10.6*sin(w0*t));
-->y1 = y;
-->y1(1:170) = 0;
-->y1(500:670) = 0;
-->mean(y1)
    4.994485
-->plot(t,y1);
```


Finding R:
For 100 mA at the load

$$
R=\frac{5 V}{100 m A}=50 \Omega
$$

To keep the ripple less than 200 mVpp

$$
V_{i n} \approx 5+10.6 V_{p p} \sin \left(2 \omega_{0} t\right)
$$

The DC term goes to the load unchanged (L and C have no effect at DC)
The AC term has an input of $10.6 \mathrm{Vpp} @ 120 \mathrm{~Hz}$
The output by voltage division is

$$
V_{o}=\left(\frac{R \| \frac{1}{j \omega C}}{R \| \frac{1}{j \omega C}+j \omega L}\right) 10.6 V_{p p}
$$

If $\mathrm{C}=0$

$$
0.2 V_{p p}=\left(\frac{50 \Omega}{50 \Omega+j \omega L}\right) 10.6 V_{p p}
$$

$$
L=3.51 \mathrm{H}
$$

If $L=1 H$

$$
\mathrm{C}=93 \mathrm{uF}
$$

Checking: In MATLAB, using the code from before for Vin:

```
IL = 0.1;
Vc = 5;
```

```
L = 1;
C = 93e-6;
R = 50;
dt = 1/60 / 1000;
for n=1:1000
Vc = Vo(1000);
for i=1:1000
        dIL = (Vin(i) - Vc) / L;
        dVc = (IL - Vc/R) / C;
        IL = IL + dIL*dt;
        Vc = Vc + dVc*dt;
        Vo(i+1) = Vc;
        end
end
plot(t,Vo);
```


Computed Value of VL with Ideal Diodes after 166 Seconds. $L=1 H, C=93 u F$

Lab:
5) Build the H -bridge and verify your computations for problem 1.

