ECE 320 - Homework #6

H-Bridge, DC to AC, SCR. Due Monday, October 5th

1) Design an H-Bridge to drive an 8-Ohms speaker forward and back.

Input:

- 5VDC, capable of driving 3A (i.e. DC power supply on lab bench)
- 0V / 5V TTL signals capable of driving 25mA (i.e. switches on the CADET boards)

Output: 8 Ohm Speaker

Relationship: You should be able to apply +5V, -5V, or 0V across the speaker by adjusting the switches

Note: The transistors in lab are \$0.05 each (vs. \$1.00 for Zetex)

- 3904: NPN, $\beta > 100$, Icmax = 200mA
- 3906: PNP, $\beta > 100$, Icmax = 200mA

Limit the current to 200mA by adding a 0.5W, 20 Ohm resistor in series with the speaker

Calculations:

NPN

$$I_{c} = \frac{5V}{25\Omega} = 200mA$$
$$\beta I_{b} > I_{c} = 200mA$$
$$I_{b} > 2mA$$
$$R_{b} < \frac{5V-0.7V}{2mA} = 2150\Omega$$

Let
$$Rb = 1k$$

PNP: (same as above except)

$$R_b < \frac{4.3V - 0V}{2mA} = 2150\Omega$$

Let Rb = 1k

The voltages and currents expected are then as follows:

2) Check youd design in PartSim (three tests: 0V, 5V, -5V)

Simulated 0V across speaker

- 3) Assume the H-bridge is to be used to drive an AC motor (BLDC, AC Synchronous, AC Induction motor).
- 3a) Explain how you convert a DC power supply into an AC voltage

Use an H-Bridge as in problem #1. Switch between +5V and -5V to create an approximate sine wave

- 3b) Explain how you adjust the speed of the AC motor
- Vary the frequency of the sine wave. Frequency = speed
- 3c) Specify the AC waveform you would send to the motor at 10Hz

3d) Calculate the efficiency of your DC to AC converter (MATLAB helps here)

First, input the square wave, Y(t)

-->t = [0:0.001:1]'; -->Y = 5*(t>1/6).*(t<3/6) -5*(t>4/6); -->plot(t,Y)

The DC term is zero:

-->DC = mean(Y)

- 0.0049950

Compute the 1st harmonic

meaning

$$y(t) = 0 + 4.777 \sin(\omega_0 t) - 2.749 \cos(\omega_0 t) + \dots$$

The energy in the total signal vs. the 1st harmonic is:

```
-->y1 = a1*sin(w0*t) + b1*cos(w0*t);
-->plot(t,y1,'r')
-->Pin = mean(Y.^2)
    16.658342
-->Pout = mean(y1 .^ 2)
    15.184579
-->eff = Pout / Pin
    0.9115301
```

The efficiency DC to AC conversion is 91%

Waveform of the signal produced by the H-bridge (blue) and the first term of its Fourier transform

4) Design a full-wave AC to DC converter using diodes and SCRs.

Input: 12V peak, 60Hz, AC signal capable of driving 1A

Output: 4.9V .. 5.1V DC signal, capable of driving 100mA

Tolerance: Output ripple < 200mV @ 100mA

Assume the turn-on time is 'a'. If the AC signal is 10.6V peak and the average is to be 5V, then

$$5 = \frac{1}{\pi} \int_{a}^{\pi} 10.6 \sin(t) dt$$

$$0.4717 = \frac{1}{\pi} \int_{a}^{\pi} \sin(t) dt$$

$$1.4819 = -\cos(t) \Big|_{a}^{\pi}$$

$$1.4819 = 1 + \cos(a)$$

$$a = 61.19^{0}$$

Checking in MATLAB:

```
-->t = [0:0.001:1]';
-->w0 = 2*%pi;
-->y = abs(10.6*sin(w0*t));
-->y1 = y;
-->y1(1:170) = 0;
-->y1(500:670) = 0;
-->mean(y1)
4.994485
-->plot(t,y1);
```


For 100mA at the load

$$R = \frac{5V}{100mA} = 50\Omega$$

To keep the ripple less than 200mVpp

 $V_{in} \approx 5 + 10.6 V_{pp} \sin\left(2\omega_0 t\right)$

The DC term goes to the load unchanged (L and C have no effect at DC)

The AC term has an input of 10.6Vpp @ 120Hz

The output by voltage division is

$$V_o = \left(\frac{\frac{R||\frac{1}{j\omega C}}{R||\frac{1}{j\omega C} + j\omega L}\right) 10.6V_{pp}$$

If C = 0

$$0.2V_{pp} = \left(\frac{50\Omega}{50\Omega + j\omega L}\right) 10.6V_{pp}$$
$$L = 3.51H$$

If L = 1H

$$C = 93 uF$$

Checking: In MATLAB, using the code from before for Vin:

IL = 0.1; Vc = 5; L = 1; C = 93e-6; R = 50; dt = 1/60 / 1000; for n=1:1000 Vc = Vo(1000); for i=1:1000 dIL = (Vin(i) - Vc) / L; dVc = (IL - Vc/R) / C; IL = IL + dIL*dt; Vc = Vc + dVc*dt; Vo(i+1) = Vc; end end

plot(t,Vo);

Lab:

5) Build the H-bridge and verify your computations for problem 1.