ECE 320 - Homework \#9

CMOS Logic, Op-Amps, Schmitt Triggers. Due Monday, October 26th

Assume an n-channel MOSFET with the following characteristics:

- $\mathrm{Vt}=2 \mathrm{~V}$
- Rds = 1 Ohm @ Vgs = 10V @ Ids = 100mA
and a corresponding p-channel MOSFET with
- $\mathrm{Vt}=-2 \mathrm{~V}$
- Rds = 1 Ohm @ Vgs = -10V @ Ids = 100mA

1) Determine the constant Kn

In the Ohmic region

$$
I_{d s}=k_{n}\left(V_{g s}-V_{t}-\frac{V_{d s}}{2}\right) V_{d s}
$$

Plugging in numbers

$$
100 m A=k_{n}\left(10 V-2 V-\frac{(100 m A)(1 \Omega)}{2}\right)(100 m A)(1 \Omega)
$$

$$
k_{n}=0.1258
$$

2) Determine the resistance when $\mathrm{Vgs}=5 \mathrm{~V}$. Assume Ids $=100 \mathrm{~mA}$ (same as before)

$$
100 m A=0.1258\left(5 V-2 V-\frac{V_{d s}}{2}\right) V_{d s}
$$

$$
V_{d s}=0.2778 \mathrm{~V}
$$

and the resistance is

$$
R_{d s}=\frac{V_{d s}}{I_{d s}}=2.778 \Omega
$$

3) Design a CMOS gate to impliment

$$
\mathrm{Y}=\mathrm{AB}+\mathrm{C}
$$

On the high-side, the output is pulled high if p-channel MOSFET C or A and B are on. Since $0 V$ turns on the MOSFET, feed these with singnals $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ and C^{\prime}

On the low-side, use DeMorgan's theorem

$$
\bar{Y}=\bar{C}(\bar{A}+\bar{B})
$$

The output is pulled low if the n-channel MOSFET is turned on

4) Write the voltage node equations for the following op-amp circuit.

$$
\begin{aligned}
& \left(\frac{V_{1}-2 V}{1 k}\right)+\left(\frac{V_{1}-V_{2}}{1 k}\right)+\left(\frac{V_{1}}{1 M}\right)+\left(\frac{V_{1}-V_{3}}{1 k}\right)=0 \\
& \left(\frac{V_{2}-V_{x}}{75}\right)+\left(\frac{V_{2}-V_{1}}{1 k}\right)=0 \\
& V_{x}=200,000\left(1-V_{1}\right) \\
& \left(\frac{V_{3}-V_{y}}{75}\right)+\left(\frac{V_{3}-V_{1}}{1 k}\right)+\left(\frac{V_{3}-V_{4}}{1 k}\right)=0 \\
& V_{y}=200,000\left(1-V_{4}\right) \\
& \left(\frac{V_{4}-0}{1 k}\right)+\left(\frac{V_{4}}{1 M}\right)+\left(\frac{V_{4}-V_{3}}{1 k}\right)=0
\end{aligned}
$$

5) Assume ideal op-amps. Write the voltage node equations for the following op-amp circuit (same as problem 4 but with ideal op-amps)

Start with the equations at V 2 and $\mathrm{V} 4:(\mathrm{Vp}=\mathrm{Vm})$

$$
\begin{aligned}
& V_{1}=1 V \\
& V_{4}=1 V
\end{aligned}
$$

Add in two more equations

$$
\begin{aligned}
& \left(\frac{V_{4}}{1 k}\right)+\left(\frac{V_{4}-V_{3}}{1 k}\right)=0 \\
& \left(\frac{V_{1}-2}{1 k}\right)+\left(\frac{V_{1}-V_{2}}{1 k}\right)+\left(\frac{V_{1}-V_{3}}{1 k}\right)=0
\end{aligned}
$$

6) Comparitor: Design a circuit which outputs

- 10 V for $\mathrm{Vin}<3 \mathrm{~V}$
- 0 V for $\mathrm{Vin}>3 \mathrm{~V}$

7) Schmitt Trigger: Design a circuit which outputs

- 10 V when Vin $>4 \mathrm{~V}$
- 0 V when Vin $<3 \mathrm{~V}$
- No change for $3 \mathrm{~V}<\mathrm{Vin}<4 \mathrm{~V}$

8) Schmitt Trigger: Design a circuit for a night-light which outputs

- 0 V when the light level is more than 10 Lux and
- 10 V when the light level is less than 7 Lux

Assume a light sensor with $R=\frac{100,000}{L u x} \Omega$
Assume a 10k resistor for the voltage divider
10 Lux: (0V)

$$
\begin{aligned}
& \mathrm{R}=10,000 \mathrm{Ohms} \\
& \mathrm{Va}=5 \mathrm{~V}
\end{aligned}
$$

7 Lux: (10V)

$$
\begin{aligned}
& \mathrm{R}=14,258 \mathrm{Ohms} \\
& \mathrm{Va}=5.8824 \mathrm{~V}
\end{aligned}
$$

Gain

$$
\text { Gain }=\left(\frac{10 V-0 V}{5.8824 V-5 V}\right)=11.33
$$

Lab: (term project)

Take one section of your term project.
7) Requirements: Specify what your circuit is going to do

- Inputs
- Outputs
- Relationship

8) Analysis. Calculations for votlages, currents, resistors, capacitors, etc
9) Test: Check you analysis in simulation.
10) Validation: Build your circuit and check that it meets the reqruiements.
