ECE 320 - Homework \#1

Matlab, PartSim, Solving $f(x)=0$. Due Monday, August 29th

1) Given 2 equations with 2 unknowns

$$
\begin{aligned}
& V=10-1000 I \\
& V=0.052 \cdot \ln \left(10^{7} \cdot I+1\right)
\end{aligned}
$$

1a) Solve in Matlab using graphical methods

$$
\begin{aligned}
& \text {-->I = [0:0.001:1]' * 0.01; } \\
& -->V 1 \text { = } 10 \text { - 1000*I; } \\
& \text {-->V2 = 0.052* } \log (1 \mathrm{e} 7 * \mathrm{I}+1) \text {; } \\
& \text {-->plot(V1, I*1000, V2, I*1000); } \\
& \text {-->xlabel('Volts'); } \\
& \text {-->ylabel('Current (mA)'); } \\
& \text {-->xgrid(4) }
\end{aligned}
$$

Solution: ($0.7 \mathrm{~V}, 9.4 \mathrm{~mA}$)
1b) Solve numerically to find V and I
Use fminsearch()
First, set up a function in Matlab to compute the error

```
function [ J ] = Prob1( I )
    V1 = 10 - 1000*I;
    V2 = 0.052*log(1e7*I + 1);
    E = V1 - V2;
    J = E^2;
    end
```

Now solve using fminsearch(). Start with an initial guess of 9 mA

```
>> Prob1(0.009)
    0.1655
>> I = fminsearch('Prob1',0.009)
I =
    0.0094
```

Check that the error is zero:
>> Prob1(I)
1.0962e-005

The solution is then
>> V = 10 - 1000*I
0.5922
answer: ($0.5922 \mathrm{~V}, 9.4 \mathrm{~mA})$
2) Given 2 equations with 2 unknowns

$$
\begin{aligned}
& V=10-1000 I \\
& I=0.1 \cdot(V-2)^{2}
\end{aligned}
$$

2a) Solve in Matlab using graphical methods

```
-->V = [0:0.01:10]';
-->I1 = (10 - V) / 1000;
-->I2 = 0.1* ( (V - 2) .^ 2 );
-->plot(V,I1*1000,V,I2*1000)
-->xgrid(4);
-->xlabel('Volts');
-->ylabel('Current (mA)');
```


Solution: (2.2V, 7.7 mA$)$ and (1.8V, 8.2 mA$)$

2b) Solve numerically to find V and I
First, set up a cost funciton in Matlab:

```
function [ J ] = Prob2( V )
    I1 = (10 - V) / 1000;
    I2 = 0.1* ( (V - 2) .^ 2 );
    E = I1 - I2;
    J = E^2;
    end
```

Solve using fminsearch()

Start with a guess close to the right solution:

```
>> V = fminsearch('Prob2',2.2)
    2.2779
>> Prob2(V)
    1.1692e-013
>> I = (10 - V) / 1000
    0.0077
```

One solution is: $\quad(2.2779 \mathrm{~V}, 7.7 \mathrm{~mA})$

Now find the solution close to the left solution:

```
>> V = fminsearch('Prob2',1.8)
    1.7121
>> Prob2(V)
    4.4340e-014
>> I = (10 - V) / 1000
    0.0083
```

The other solution is $(\mathbf{1 . 7 1 2 1 V}, 8.3 \mathrm{~mA})$
3) Solve using fminsearch() in Matlab

$$
\begin{aligned}
& \left(\frac{V_{1}-10}{100}\right)+\left(\frac{V_{1}-V_{2}}{200}\right)+\left(\frac{V_{1}}{300}\right)+I_{d 1}=0 \\
& I_{d 1}+\left(\frac{V_{1}-V_{2}}{200}\right)=I_{d 2} \\
& I_{d 1}=10^{-7} \cdot\left(e^{20\left(V_{1}-V_{2}\right)}-1\right) \\
& I_{d 2}=10^{-7} \cdot\left(e^{20 V_{2}}-1\right)
\end{aligned}
$$

Create a cost function in Matlab:

```
function [ J ] = Prob3( Z )
V1 = Z(1);
V2 = Z(2);
I1 = Z(3);
I2 = Z(4);
E1 = (V1-10)/100 + (V1-V2)/200 + (V1/300) + I1;
E2 = I1 + (V1-V2)/200 - I2;
E3 = I1 - 1e-7*(exp(20*(V1-V2))-1);
E4 = I2 - 1e-7*(exp(20*V2)-1);
    J = E1^2 + E2^2 + E3^2 + E4^2;
    end
```

Solve using fminsearch(). Use problem \#4 as a starting guess:

```
>> Z = fminsearch('Prob3',[1.4,0.7,0.01,0.01])
V1 V2 I2
    1.3594 0.6807 0.0784 0.0818
```

Check the error:
>> Prob3(Z)
$2.8525 \mathrm{e}-009$

Close to zero, so the solution above is almost correct.
4) Input this circuit into PartSim to solve for the node votlages

This took a little effort to get it to show the currents. Adding a 0 V source in series with the diodes seemed to work:

The net results is

$$
\begin{aligned}
\mathrm{V} 1 & =1.05 \mathrm{~V} \\
\mathrm{~V} 2 & =0.526 \mathrm{~V} \\
\mathrm{Id} 1 & =83.4 \mathrm{~mA} \\
\mathrm{Id} 2 & =86.0 \mathrm{~mA}
\end{aligned}
$$

