ECE 320 - Solution to Homework \#2

PN Junctions, Diodes, Ideal Diodes. Due Wednesday, September 7th

1) A 100 Ohm resistor and a pn junction are in a circuit:

1a) Will current flow if Vin $=+10 \mathrm{~V}$? Explain why or why not.
Yes - curent will flow
You are using majority carriers so the resistance is small from p to n 10 V is enough to overcome the potential energy barrier and allow current to flow

10 V is enough to reduce the depletion zone to zero, allowing current to flow

1b) Will current flow if Vin $=+10 \mathrm{mV}$? Explain why or why not.
Yes - current will flow
It will be very small since 10 mV is not enough to overcome the potential energy barrier. Still, a few electrons will have enough energy to overcome this barrier

No - current will not flow
10 mV is not enough to overcome the potential energy barrier
10 mV is not enough to remove the depletion zone - which is blocking current flow

1a) Will current flow if Vin $=-10 \mathrm{~V}$? Explain why or why not.
Yes - current will flow, but it will be very small. You are using minority carriers, which are very few but non-zero.
No - current will not flow.
You are using minority carriers so the current is very small (10^{-12} Amps - essentially zero)
-10V just makes the potential energy barrier even larger, blocking current
-10 V just makes the depletion zone larger, blocking current

Problem 2-7) Use the following circuit:

$$
V_{d}=0.052 \ln \left(10^{7} \cdot I_{d}+1\right) \quad I_{d}=10^{-7} \cdot\left(\exp \left(\frac{V_{d}}{0.052}\right)-1\right)
$$

2) Write the voltage node equations for the above circuit (don't solve)

$$
\begin{aligned}
& \left(\frac{V_{1}-10}{1 k}\right)+\left(\frac{V_{1}-V_{2}}{1 k}\right)+\left(\frac{V_{1}}{1 k}\right)+10^{-7} \cdot\left(\exp \left(\frac{V_{1}-V_{2}}{0.052}\right)-1\right)=0 \\
& \left(\frac{V_{2}-V_{1}}{1 k}\right)+10^{-7} \cdot\left(\exp \left(\frac{V_{1}-V_{2}}{0.052}\right)-1\right)=10^{-7} \cdot\left(\exp \left(\frac{V_{2}}{0.052}\right)-1\right)
\end{aligned}
$$

3) Write the current loop equations for the above circuit (don't solve)

$$
\begin{aligned}
& -10+1000 I_{1}+0.052 \ln \left(10^{7}\left(I_{1}-I_{2}\right)+1\right)+0.052 \ln \left(10^{7}\left(I_{1}-I_{3}\right)+1\right)=0 \\
& -0.052 \ln \left(10^{7}\left(I_{1}-I_{2}\right)+1\right)+1000\left(I_{2}-I_{3}\right)=0 \\
& -0.052 \ln \left(10^{7}\left(I_{1}-I_{3}\right)+1\right)+1000\left(I_{3}-I_{2}\right)+1000\left(I_{3}\right)=0
\end{aligned}
$$

4) Determine the voltages and currents assuming ideal silicon diodes.

Assume both diodes are on. The voltage drop across each is 0.7 V
This results in the currents being as shown above. The current through D1 is then from conservation of current:

$$
8.6 m A=I_{d 1}+0.7 m A+1.4 m A
$$

$$
I_{d 1}=6.5 \mathrm{~m} A
$$

Id2 is then

$$
\begin{aligned}
& I_{d 2}=6.5 \mathrm{~mA}+0.7 \mathrm{~mA} \\
& I_{d 2}=7.2 \mathrm{~mA}
\end{aligned}
$$

5) Determine the voltages and currents using PartSim (or other simulation software)

Lab

6) Determine the voltages and currents using real silicon diodes.

Parameter	Computed	Simulated	Measured
V 1	1.4 V	0.868 V	-
V 2	0.7 V	0.437 V	-
Id1	6.5 mA	7.83 mA	-
Id2	7.2 mA	8.26 mA	-

