ECE 320 - Homework \#5

Transistor Theory, Transistor as a Switch, H-Bridge. Due Monday, September 26th
Assume

- NPN: 3904 Transistor, $\beta=100, \max (\mathrm{Ic})=200 \mathrm{~mA}, \max ($ Vce $)=40 \mathrm{~V}, \$ 0.06$ ea.
- PNP: 3907 Transistor, $\beta=100, \max (\mathrm{Ic})=200 \mathrm{~mA}, \max (\mathrm{Vec})=40 \mathrm{~V}), \$ 0.07$ ea.

Transistors:

1) The VI characterstics for a transistor are given in the following graph.

Label the Off - Saturated - and Active regions on this graph.
Determine the current gain, β, from this graph.
20uA at Ib produces 2 mA at Ic.

$$
\beta=100
$$

2) For the circuit to the right, draw the load line
 shown on graph
3) Determine the Q-point (Vc, Ic) when

Vin $=0.5 \mathrm{~V}: \quad$ This isn't enough to turn on the diode, so

$$
\begin{aligned}
& \mathrm{Ib}=0 \\
& \mathrm{Ic}=0 \\
& \text { Vce }=12 \mathrm{~V}
\end{aligned}
$$

Vin $=3 V: \quad$ This is enough to turn on the diode from base to emitter. Assuming active:

$$
\begin{aligned}
& I_{b}=\left(\frac{3 V-0.7 V}{20 k}\right)=115 \mu A \\
& I_{c}=\beta I_{b}=11.5 m A \\
& V_{c}=12 V-1 k \cdot I_{c} \\
& V_{c}=0.5 V
\end{aligned}
$$

The Q-point is

$$
\text { Vce }=0.5 \mathrm{~V}
$$

$$
\mathrm{Ic}=11.5 \mathrm{~mA}
$$

Vin $=5 \mathrm{~V}: \quad$ This is enough to turn on the diode from base to emitter. Assuming active:

$$
\begin{aligned}
& I_{b}=\left(\frac{5 V-0.7 V}{20 k}\right)=215 \mu A \\
& I_{c}=\beta I_{b}=21.5 m A
\end{aligned}
$$

$V_{c}=12 \mathrm{~V}-1 \mathrm{k} \cdot I_{c}$
$V_{c}=-9.50 \mathrm{~V}$
Vc can't go negative, so it clips at 0.2 V (saturated). Then

$$
I_{c}=\left(\frac{12 V-0.2 V}{1 k}\right)=11.8 m A
$$

The Q-point is

$$
\begin{aligned}
& \text { Vce }=0.2 \mathrm{~V} \\
& \mathrm{Ic}=11.8 \mathrm{~mA}
\end{aligned}
$$

Transistor Switches:

4) Design a circuit which allows you to turn on and off a 3W LED with the function generator:

Input: $0 \mathrm{~V} / 5 \mathrm{~V}$ signal capable of driving 20 mA
Output: 3W LED. Vf = 3V @ 1A

Relationship:

- 0 V in $=0 \mathrm{~mA}$ to the LED
- 5 V in $=100 \mathrm{~mA}$ to the LED (something the 3904 transistor is capable of)

First, design a circuit to drive 100 mA through the LED. Assume a 5 V power supply

$$
R_{C}=\left(\frac{5 V-3 V-0.2 V}{100 \mathrm{~mA}}\right)=18 \Omega
$$

Next, choose Rb so that

- $\mathrm{Ib}<20 \mathrm{~mA}$ (input limit), and
- $100 \mathrm{Ib}>$ Ic

To saturate the transistor

$$
\begin{aligned}
& \beta I_{b}>I_{c} \\
& I_{b}>\frac{100 \mathrm{~mA}}{100}=1 \mathrm{~mA}
\end{aligned}
$$

Let $\mathrm{Ib}=2 \mathrm{~mA}$

$$
R_{b}=\left(\frac{5 V-0.7 V}{2 m A}\right)=2150 \Omega
$$

The exact value of Rb isn't critical: anything close works. Let $\mathrm{Rb}=2200$.

PartSim Simulation:

Diode is on: A white LED isn't in PartSim, so use a 3V source to simulate the voltage drop through the diode.
This results in

- Ic $=103 \mathrm{~mA}$ (vs. 100 mA computed)
- $\mathrm{Ib}=1.92 \mathrm{~mA}$ (vs. 1.955 computed)

0 V in turns off the diode

H-Bridge

5) Design an H -bridge to drive $+/-100 \mathrm{~mA}$ through an 8 -Ohm speaker

Input: Four signals (A,B,C,D), each $0 / 5 \mathrm{~V}$ capable of 20 mA
Output: 8 Ohm Speaker

Relationship:

- Setting (A, B, C, D) to different voltages allows you to drive the speaker at $+100 \mathrm{~mA}, 0 \mathrm{~mA}$, or -100 mA
- Tolerance: 10%

Assume +5 V power.
Add a resistance to limit the current to the $8-\mathrm{Ohm}$ speaker to 100 mA

$$
R_{\text {total }}=\left(\frac{4.8 \mathrm{~V}-0.2 \mathrm{~V}}{100 \mathrm{~mA}}\right)=46 \Omega
$$

The 8-Ohm speaker contributes 8 Ohms (duh), so you need to add 38 Ohms to get to 46 Ohms.
To saturate the transistors, pick Rb so that 100Ib > Ic. For the PNP transistors (When Vc $=0 \mathrm{~V}$)

$$
R_{b}=\left(\frac{5 V-0.7 V}{20 m A}\right)=2150 \Omega
$$

For the NPN transistors (when $\mathrm{Vb}=5 \mathrm{~V}$)

$$
R_{b}=\left(\frac{5 V-0.7 V}{20 m A}\right)=2150 \Omega
$$

Round each to 2200 Ohms (resulting in $\mathrm{Ib}=1.955 \mathrm{~mA}$). This H-brige will work for loads up to 195.5 mA .

Simulating in PartSim:

	Calculated	Simulated	Measured (lab)
Vleft	0.2 V	0.140 V	-
Vright	4.8 V	4.89 V	-
Vb1	0.7 V	0.775 V	-
Vb3	4.3 V	4.48 V	-

	Calculated	Simulated	Measured (lab)
Vleft	4.8 V	4.89 V	-
Vright	0.2 V	0.140 V	-
Vb4	0.7 V	0.775 V	-
Vb2	4.3 V	4.40 V	-

Lab:

6) Simulate in PartSim (or similar program) problem 3, 4, or 5
7) Build in lab either problem 3,4 , or 5 .
