ECE 320 - Homework \#8

Schmitt Triggers, MOSFET's, MOSFET Switch. Due Monday, October 17th

Schmitt Trigger:

1) Assume you have a light sensor whose resistance is

$$
R=\left(\frac{100,000}{L u x}\right) \Omega
$$

Design a circuit which is capable of driving a 1 k Ohm load where

- The output goes to +10 V when the light level drops below 20 Lux and
- The output goes to 0 V when the light level goes above 25 Lux.

Assume you are using a voltage divider with a 5k resistor:
At 20 Lux:

$$
R=5000
$$

$$
V_{a}=\left(\frac{5000}{5000+5000}\right) 10 V=5 V
$$

At 25 Lux:

$$
\begin{aligned}
& \mathrm{R}=4000 \\
& V_{a}=\left(\frac{4000}{4000+5000}\right) 10 \mathrm{~V}=4.444 \mathrm{~V}
\end{aligned}
$$

The gain is

$$
\text { gain }=\left(\frac{10 V-0 V}{5 V-4.444 V}\right)=18.0
$$

When the output is 0 V , you're on the verge of switching at 4.444 V . The offset is 4.444 V .

MOSFET: The VI characteristics for a MOSFET are shown below.
2) Label the off / saturated / and ohmic regions.
3) Determine the turn-on voltage and transconductance gain, gm
4) Draw the load-line for the circuit shown to the right.
5) Determine the Q-point for

- $\mathrm{Vg}=0 \mathrm{~V}$
$\mathrm{Vds}=10 \mathrm{~V}$
Ids $=0 \mathrm{~mA} \quad$ off
- $\mathrm{Vg}=2 \mathrm{~V}$
$\mathrm{Vds}=7 \mathrm{~V}$
Ids $=10 \mathrm{~m}$
saturated
- $\mathrm{Vg}=3 \mathrm{~V}$
$\mathrm{Vds}=1 \mathrm{~V}$
Ids $=30 \mathrm{~mA} \quad$ Ohmic

6) Design a circuit to turn on and off a 12V DC motor which draws 3A. Assume the MOSFET characteristics are:

- $\mathrm{V}_{\mathrm{DS}} \max =100 \mathrm{~V}$
- $\mathrm{I}_{\mathrm{D} \text { max }}=11 \mathrm{~A}$ (continuous)
- $\mathrm{R}_{\mathrm{DS}}=173 \mathrm{mOhm} @ \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
- $\mathrm{V}_{\mathrm{T}}=2 \mathrm{~V} @ 1 \mathrm{~mA}$

MOSFET's are actually really easy to use as a switch:

- The motor acts like a 4 Ohm resistor (12 V @ 3A)
- The MOSFET acts like a 0.173 Ohm resistor when Vgs $=10 \mathrm{~V}$.
- The net current when on $(\mathrm{Vgs}=10 \mathrm{~V})$ is approximately:

$$
I_{d s} \approx\left(\frac{10 \mathrm{~V}}{4 \Omega+0.173 \Omega}\right)=2.39 A
$$

- The current when $\mathrm{Vgs}=0 \mathrm{~V}$ is 0 (the MOSFET is off)

More Exact Solution: The resistance changes when you change Ids - so it's not exactly 0.173 Ohms in this case. To get a more accurate answer, first, find Kn. In the ohmic region

$$
\begin{aligned}
& \text { RDS }=0.173 \text { when } V g s=10 \mathrm{~V} \text { and Ids }=5 \mathrm{~A} \quad \text { (meaning Vds }=\mathrm{Rds} * \operatorname{Ids}=0.865 \mathrm{~V} \text {) } \\
& I_{d s}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} \\
& 5 A=k_{n}\left(10 \mathrm{~V}-2 V-\frac{0.865 \mathrm{~V}}{2}\right) 0.865 \mathrm{~V} \\
& k_{n}=0.7638 \frac{A}{V^{2}}
\end{aligned}
$$

For the above circuit with a 4 Ohm resistor

$$
\begin{aligned}
& I_{d s}=0.7638\left(10 \mathrm{~V}-2-\frac{V_{d s}}{2}\right) V_{d s} \\
& V_{d s}=10-4 I_{d s}
\end{aligned}
$$

Solving 2 equations for 2 unknowns numerically:

$$
\begin{aligned}
& \text { Ids }=2.3993 \mathrm{~A} \quad(\text { vs. } 2.39 \mathrm{~A} \text { computed above }) \\
& \mathrm{Vds}=0.4028 \mathrm{~V} \\
& R_{d s}=\left(\frac{V_{d s}}{I_{d s}}\right)=0.168 \Omega(\text { vs. } 0.173 \text { Ohms assumed above })
\end{aligned}
$$

More Fun: What if you change the input voltage at Vg to $0 \mathrm{~V} / 5 \mathrm{~V}$?
Repeating the previous calculations

$$
\begin{aligned}
& \mathrm{kn}=0.7638 \\
& I_{d s}=0.7638\left(5 \mathrm{~V}-2-\frac{V_{d s}}{2}\right) V_{d s} \\
& V_{d s}=10-4 I_{d s}
\end{aligned}
$$

Solving numerically:

$$
\begin{aligned}
& \text { Ids }=2.200 \mathrm{~A} \quad(\text { vs. } 2.39 \mathrm{~A}) \\
& \mathrm{Vds}=1.200 \mathrm{~V} \\
& \mathrm{Rds}=\mathrm{Vds} / \mathrm{Ids}=0.5455 \mathrm{Ohms}
\end{aligned}
$$

Term Project (part 1)

Lab: 7-10) Design, build, and test one part of your term project
7) Requirements: Specify

- Inputs
- Outputs
- How they relate

8) Analysis: Give calculations for resitors, capacitors, etc. for a circuit which meets these requirements.
9) Testing: Simulate your circuit in PartSim (or similar software) to check if you calculations were correct.
10) Validation: Build your circuit and collect data to verify your design meets your requirements.
