ECE 320 - Quiz #3 - Name

LEDs, ideal diodes. September 14, 2017

1) Write N voltae node equations which would allow you to solve for the N unknow voltages

Votlage Source	$V_1 - V_3 = 4$
Node V2 (blue)	$-3(V_2 - V_3) + \left(\frac{V_2}{200}\right) + \left(\frac{V_2 - V_3}{400}\right) = 0$
Supernode (orange)	$\left(\frac{V_1}{100}\right) + \left(\frac{V_2}{200}\right) + \left(\frac{V_3}{300}\right) = 0$

2) A RGB has the following characteristics

•	Red:	Vf = 1.8V	@ 20mA	8000 mcd @	@ 20mA

- Green: Vf = 3.0V @ 20mA 8000 mcd @ 20mA
- Blue: Vf = 3.0V @ 20mA 8000 mcd @ 20mA

Find Rr, Rg, and Rb so that the LED outputs hot pink:

544	622	470	
R(red)	R(green)	R(blue)	
7500 mcd	5781 mcd	7656 mcd	

Red:

$$I_r = \left(\frac{7500mcd}{8000mcd}\right) 20mA = 18.75mA$$
$$R_r = \left(\frac{12V - 1.8V}{18.75mA}\right) = 544\Omega$$

Green

$$I_{g} = \left(\frac{5781mcd}{8000mcd}\right) 20mA = 14.45mA$$
$$R_{g} = \left(\frac{12V - 3.0V}{14.45mA}\right) = 622\Omega$$

Blue

$$I_b = \left(\frac{7656mcd}{8000mcd}\right) 20mA = 19.14mA$$
$$R_b = \left(\frac{12V-3.0V}{19.14mA}\right) = 470\Omega$$

3) A RGB LED has the following specifications:

- Red: Vf = 1.8V @ 20mA 8000 mcd @ 20mA
- Green: Vf = 3.0V @ 20mA 8000 mcd @ 20mA
- Blue: Vf = 3.0V @ 20mA 8000 mcd @ 20mA

Determine the current through each LED and the number of mcd produced for the following circuit:

	Red	Green	Blue
Current	12.8mA	0	0
mcd	5100 mcd	0	0

Only the red LED turns on. It limits the voltage to 1.8V, which isn't enough to turn on the green or blue LEDs.

Ig = 0

$$Ib = 0$$

For the red LED

$$I = \left(\frac{12V - 1.8V}{800\Omega}\right) = 12.8mA$$
$$mcd = \left(\frac{12.8mA}{20mA}\right) 8000mcd = 5100mcd$$

Assume all diodes are on. The voltages are then {0.7V, 1.4V, 2.1V}

Once you know the voltages, you can compute the currents I2, I3, and I4 as well a the current in

$$I_{2} = \left(\frac{2.1V-1.4V}{1k}\right) = 0.7mA$$
$$I_{3} = \left(\frac{2.1V-0.7V}{1k}\right) = 1.4mA$$
$$I_{4} = \left(\frac{2.1V-0V}{1k}\right) = 2.1mA$$
$$I_{in} = \left(\frac{12V-2.1V}{1k}\right) = 9.9mA$$

Current in equals current out

$$I_{in} = I_1 + I_2 + I_3 + I_4$$

9.9mA = I_1 + 0.7mA + 1.4mA + 2.1mA
I_1 = 5.7mA

Problem 4) Checking in PartSim

	Iin	I1	I2	I3	I4
Calculate	9.9mA	5.7mA	0.7mA	1.4mA	2.1mA
Simulate	10.1mA	6.38mA	0.62mA	1.24mA	1.88mA

5) Determine the currents I1 to I4. Assume ideal silicon diodes with Vf = 0.7V

I1	I2	I3	I4
0	0	0.53mA	1.23mA

Guess the top diodes are off. Solve for the voltage at Vx

$$\left(\frac{V_x-3}{1k}\right) + 0 + 0 + \left(\frac{V_x-0.7}{1k}\right) + \left(\frac{V_x}{1k}\right) = 0$$
$$V_x = 1.23V$$

Check:

- The voltage across the top diode is 0V (< 0.7V off)
- The voltage across the middle diode is 0.53V (< 0.7V off)

The currents are then

$$I_3 = \left(\frac{1.23V - 0.7V}{1k}\right) = 0.53mA$$
$$I_4 = \left(\frac{1.23V - 0V}{1k}\right) = 1.23mA$$

Problem 5) Checking in PartSim

	Iin	I1	I2	I3	I4
Calculate	1.77mA	0	0	0.53 mA	1.23 mA
Simulate	1.88 mA	0.000025 mA	0.000165 mA	0.604 mA	1.12 mA

The maximum extent of Arctic sea ice from 1979 to 2016 is plotted below (source: National Sea and Ice Data Center).

Based upon this data, when will the Arcitc be ice free all year long?

Draw a line through the data. The slope of this line is

$$slope = \left(\frac{16.5-14.5}{1975-2020}\right) = -0.0444 \frac{\text{million km}^2}{\text{year}}$$

Projecting into the future from 2020, you'll hit zero at

years =
$$\left(\frac{14.5 \text{ million km}^2}{0.0444 \text{ million km}^2/\text{year}}\right) = 326 \text{ years.}$$

Since this was from the year 2020

$$year = 2020 + 326 = 2346$$

The Arctic should be ice free all year round in the year 2346. (approximately)