ECE 320 - Solution to Homework \#1

EE 206 Review, Phasors. Due Monday, August 28th, 2017

Current Loops:

1a) Write the current loop equations for the following circuit

Start with the current sources

$$
I_{4}-I_{3}=10 I_{a}=10\left(I_{2}-I_{1}\right)
$$

Add three more equations. Avoid the current source since the voltage is unknown

$$
\begin{aligned}
& 100 I_{1}+300\left(I_{1}-I_{3}\right)+200\left(I_{1}-I_{2}\right)=0 \\
& -10+200\left(I_{2}-I_{1}\right)+400\left(I_{2}-I_{3}\right)=0 \\
& -10+100 I_{1}+500 I_{4}=0
\end{aligned}
$$

1b) Solve using Matlab (or similar program)
Group terms

$$
\begin{aligned}
& 10 I_{1}-10 I_{2}-I_{3}+I_{4}=0 \\
& 600 I_{1}-200 I_{2}-300 I_{3}=0 \\
& -200 I_{1}+600 I_{2}-400 I_{3}=10 \\
& 100 I_{1}+500 I_{4}=10
\end{aligned}
$$

Place in matrix form
$\left[\begin{array}{cccc}10 & -10 & -1 & 1 \\ 600 & -200 & -300 & 0 \\ -200 & 600 & -400 & 0 \\ 100 & 0 & 0 & 500\end{array}\right]\left[\begin{array}{l}I_{1} \\ I_{2} \\ I_{3} \\ I_{4}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ 10 \\ 10\end{array}\right]$

Solve in Matlab

```
            >> A = [10,-10,-1,1 ; 600,-200,-300,0 ; -200, 600, -400, 0 ; 100 0 0 500]
\begin{tabular}{rrrr}
10 & -10 & -1 & 1 \\
600 & -200 & -300 & 0 \\
-200 & 600 & -400 & 0 \\
100 & 0 & 0 & 500
\end{tabular}
>> B = [0 ; 0 ; 10 ; 10 ]
            0
            0
            10
            10
>> I = inv(A)*B
    -0.0295
    -0.0225
    -0.0440
        0.0259
```

1c) Check your answers in PartSim (or similar circuit simulator)

Check:

$$
\begin{aligned}
& I_{1}=\left(\frac{10 \mathrm{~V}-13 \mathrm{~V}}{100 \Omega}\right)=-0.03 A \\
& I_{2}=-22.5 \mathrm{~mA} \\
& I_{4}=\frac{13 \mathrm{~V}}{500 \Omega}=26 \mathrm{~mA}
\end{aligned}
$$

Voltage Nodes:

2a) Write the voltage node equations for the following circuit
Sum the current from each node to zero:

$$
\begin{aligned}
& V_{1}=10 \\
& \left(\frac{V_{2}-V_{1}}{200}\right)+\left(\frac{V_{2}}{400}\right)+\left(\frac{V_{2}-V_{3}}{300}\right)=0 \\
& \left(\frac{V_{3}-V_{1}}{100}\right)+\left(\frac{V_{3}-V_{2}}{300}\right)+\left(\frac{V_{3}}{500}\right)-10\left(\frac{V_{1}-V_{2}}{200}\right)=0
\end{aligned}
$$

2b) Solve using Matlab (or similar program)
Group terms.

$$
\begin{aligned}
& V_{1}=10 \\
& \left(\frac{-1}{200}\right) V_{1}+\left(\frac{1}{200}+\frac{1}{400}+\frac{1}{300}\right) V_{2}+\left(\frac{-1}{300}\right) V_{3}=0 \\
& \left(\frac{-1}{100}+\frac{-10}{200}\right) V_{1}+\left(\frac{-1}{300}+\frac{10}{200}\right) V_{2}+\left(\frac{1}{100}+\frac{1}{300}+\frac{1}{500}\right) V_{3}=0
\end{aligned}
$$

Place in matrix form.

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
\left(\frac{-1}{200}\right) & \left(\frac{1}{200}+\frac{1}{400}+\frac{1}{300}\right) & \left(\frac{-1}{300}\right) \\
\left(\frac{-1}{100}+\frac{-10}{200}\right) & \left(\frac{-1}{300}+\frac{10}{200}\right) & \left(\frac{1}{100}+\frac{1}{300}+\frac{1}{500}\right)
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{c}
10 \\
0 \\
0
\end{array}\right]
$$

Solve in matlab

```
>> A = [1,0,0;
                -1/200, 1/200+1/400+1/300, -1/300 ;
                -1/100-10/200, -1/300+10/200, 1/100+1/300+1/500]
1.0000
-0.0050
-0.0600
0
0.0108
0.0467
0.0
\(-0.0033\)
0.0153
\(\gg B=[10 ; 0 ; 0]\)
10
0
\(\gg V=\operatorname{inv}(A) * B\)
10.0000
8.6010
12.9534
```

2c) Check your answers in PartSim (or similar circuit simulator)

The voltages match
3) Assume Vin contains a DC and 60 Hz signal:

$$
V_{i n}=10+3 \sin (377 t)
$$

3a) Determine the impedances of the inductor, capacitor, and resistor at DC and $377 \mathrm{rad} / \mathrm{sec}$

$D C(w=0)$ $(s h o w n ~ i n ~ r e d)$	$A C(w=377)$ $($ shown in blue $)$
V Vin $=10$	Vin $=-j 3$
$j w L=0$	
$1 / j w C=$ infinity	$1 / j w L=j 377$
jwC $=-j 0.2653$	

The capacitor and resistor in parallel are: 50 || infinity = 50

By voltage division, V2 is
$V_{2}=\left(\frac{50}{50+j 0}\right) \cdot 10$
$V_{2}=10$
The capacitor and resistor in parallel are:
$\left(\frac{1}{50}+\frac{1}{-j 0.2653}\right)^{-1}=0.0014-j 0.2653$
By voltage division, V2 is

$$
\begin{aligned}
& V_{2}=\left(\frac{0.0014-j 0.2653}{0.0014-j 0.2653+j 377}\right)(-j 3) \\
& V_{2}=0.0021 \angle 90^{0} \\
& \text { This is shorthand notation for } \mathrm{V} 2(\mathrm{t}) \\
& V_{2}=0.0021 \cos \left(377 t+90^{0}\right)
\end{aligned}
$$

To get the total answer, add the DC and AC terms together
$V_{2}=10+0.0021 \cos \left(377 t+90^{0}\right)$

3c) Check your answer using PartSim (or similar program)
Input the circuit in PartSim. Set the input to

- No DC
- No AC
- Transient Source: 10 V offset, 3 V amplitude, 60 Hz

The ripple on V2 is very hard to see since its so small

4) Assume Vin contains a DC and 1 kHz signal:

$$
V_{i n}=5+3 \sin (6280 t)
$$

4a) Determine the impedances of the inductor, capacitor, and resistor at DC and $6280 \mathrm{rad} / \mathrm{sec}$

$D C(w=0)$ $($ shown in red $)$	$A C(w=6280)$ $($ shown in blue $)$
Vin $=5$ Vin $=-j 3$ $j w L=0$	$j w L=j 6280$
$1 / j w C=$ infinity	$1 / j w C=-j 0.0159$

The capacitor and resistor in parallel are: 50 || infinity = 50

By voltage division, V 2 is
$V_{2}=\left(\frac{50}{50+j 0}\right) \cdot 5$
$V_{2}=5$

To get the total answer, add the DC and AC terms together
$V_{2}=5+0.0000076 \cos \left(6280 t+90^{\circ}\right)$

The capacitor and resistor in parallel are:
$\left(\frac{1}{50}+\frac{1}{-j 0.0159}\right)^{-1}=0-j 0.0159$
By voltage division, V2 is

$$
\begin{aligned}
& V_{2}=\left(\frac{0-j 0.0159}{0-j 0.0159+j 6280}\right)(-j 3) \\
& V_{2}=0.0000076 \angle 90^{0} \\
& \text { This is shorthand notation for } \mathrm{V} 2(t) \\
& V_{2}=0.0000076 \cos \left(6280 t+90^{0}\right)
\end{aligned}
$$

