ECE 320 - Solution to Homework \#4

Clipper, Max/Min, AC to DC Converters. Due Monday, September 18th, 2017

Clipper:

1) Design a circuit to approximate the following function.

- Input: X. 0 .. 10 V signal, capable of driving 20 mA
- Output: Y: 100k resistor
- Relationship: shown below
- Tolerance: +/- 1 V

Step 1: Draw in straight line approximations to this function. If the voltage deviates by more than 1 V , add another line (i.e. meet the requirements)

Shown in orange.
Add a resistor (1 k shown here). This affects the overall gain of the circuit as

$$
\left(\frac{100 k}{100 k+1 k}\right)=0.99
$$

so the gain will be off by 1% under load (load $=100 \mathrm{k})$, correct with no load (load $=$ infinite $)$

Step 2: The initial slope is 1.36. Add an amplifier with a gain of 1.36

Step 3: On the Y axis, the voltages of the corners tell you the turn-on voltages for each leg. These are at

- 3V
- 5.5 V

Step 4: When the output reaches 3 V , the slope drops to 0.6 . To get this

$$
\begin{aligned}
& \text { slope }=0.6=\left(\frac{R}{R+1 k}\right) 1.36 \\
& R=789 \Omega
\end{aligned}
$$

When the output reaches 5.5 V , the slope drops to 0.14 . To get this slope

$$
\text { slope }=0.14=\left(\frac{R}{R+1 k}\right) 1.36
$$

$$
R=117 \Omega
$$

2) Check your design in PartSim (or similar program)

The zener diodes are a little hard to find exactly what I want. Fairchild Semiconductors has a lot of zeners - choose ones with a zener voltage of 3.3 V and 6.3 V (as close as I could get)

NVOW Seareme	Q
- Diodes the copporated	129
- Falichild Semiconduc....	
© PChamelurets	
(1) Rectier Dowos	
日 zemeroises	

Unnamed Project Simulation

Max / Min

3a) Determine the voltages and currents for the following max/min circuit. see below

3b) What function does this implement?

$$
\begin{aligned}
& Y=f(A, B, C, D) \\
& Y=\max (\min (A, B), \min (C, D)) \\
& Y=A B+C D
\end{aligned}
$$

AC to DC

Design a circuit to meet the following requirements:

- Input: 20 Vp 60 Hz sine wave capable of driving 500 mA (i.e. wall transformers in lab)
- Output: 1 k Ohm resistor
- Relationship: V2 is a DC signal with 200 mVpp ripple when the load is 1 k Ohm
- Tolerance: $+/-50 \mathrm{mV}$ pp ripple with a 1 k Ohm load

4a) Assume $\mathrm{L}=0$. Determine C so that the ripple at V 2 is 1 Vpp .
The diode drops 0.7 V , so the peak voltage at V 1 is 19.3 V
The current is (worst case)

$$
I=\left(\frac{19.3 V}{1 k \Omega}\right)=19.3 m A
$$

The capacitor is then

$$
\begin{aligned}
& I=C \frac{d V}{d t} \\
& 19.3 \mathrm{~mA}=C \frac{1 V}{1 / 60 \mathrm{~s}}
\end{aligned}
$$

$$
C=312 \mu F
$$

4b) Determine L so that the ripple at V2 is rediced to 200 mVpp
The inductor reduces the ripple from 1 Vpp to $200 \mathrm{mVpp}(5 \mathrm{x}$).
To do this, make the inductor 5 x the load

$$
\begin{aligned}
& j \omega L=j 5000 \Omega \\
& j \cdot 2 \pi \cdot 60 H z \cdot L=j 5000 \\
& j \cdot 377 \cdot L=j 5000 \\
& L=13.26 H
\end{aligned}
$$

4c) Check your design in PartSim

	Calculation	Simluation	Lab
$\max (\mathrm{Vc})$	19.3 V	19.356 V	
$\min (\mathrm{Vc})$	18.3 V	18.33 V	
Vcpp	1 Vpp	1.026 Vpp	
$\max (\mathrm{Vr})$		18.803 V	
$\min (\mathrm{Vr})$		18.616 V	
Vrpp	200 mVpp	187 mVpp	

Lab:

6) Build and test one of these circuits in lab.
