ECE 320 - Homework \#5 Solution

DC to DC Converters, Transistors, Transistor Switch. Due Monday, September 25th, 2017

Full Bridge Rectifier

1) For the following circuit, determine the

- DC voltage (i.e. the mean voltage), and the
- AC voltage (peak-to-peak or ripple)
at V1 and V2.
$\operatorname{Max}(\mathrm{V} 1)=18.6 \mathrm{~V}$
20 V peak, minus two diodes
Assume V2 $=18.6 \mathrm{~V}$. The current is

$$
I=\left(\frac{18.6 V-3 V}{1 \mathrm{k}}\right)=15.6 \mathrm{~mA}
$$

The ripple is

$$
\begin{aligned}
& I=C \frac{d V}{d t} \\
& 15.6 m A=100 \mu F \cdot \frac{d t}{1 / 120 s} \\
& d V_{1}=1.3 V_{p p}
\end{aligned}
$$

So, the voltage at V 1 is

- $\max (\mathrm{V} 1)=18.6 \mathrm{~V}$
- $\min (\mathrm{V} 1)=17.3 \mathrm{~V}$
- \quad mean $(\mathrm{V} 1)=17.95 \mathrm{~V}$

The voltage at V 2 is then

- mean $(\mathrm{V} 2)=17.95 \mathrm{~V} \quad$ (same as V 1)

$$
\begin{aligned}
& V_{2 p p}=\left|\frac{1000}{1000+j 7540}\right| \cdot V_{1 p p} \\
& V_{2 p p}=171 m V_{p p}
\end{aligned}
$$

2) Check your analysis in PartSim.

	V 1		V 2	
	Calc	Sim	Calc	Sim
\max	18.6 V	18.58 V		18.11 V
\min	17.3 V	17.519 V		17.995 V
mean (DC)	17.95 V	18.05 V	17.95 V	18.05 V
$\mathrm{Vpp}(\mathrm{AC})$	1.3 Vpp	1.06 Vpp	171 mVpp	115 mVpp

Lab:

3) Check your analysis in lab.

Transistors:

The VI characteristics for a transistor are shown on shown below
4) Determine the gain for this transistor and label the following regions

- Off
- Active
- Saturated

Gain $=20$

$$
4 \mathrm{~mA}->80 \mathrm{~mA}
$$

5) Draw the load line for the following circuit and mark the operating point when
a) $\mathrm{Vin}=0 \mathrm{~V}$

$$
\mathrm{Ib}=0, \mathrm{Ic}=0, \mathrm{Vce}=10 \mathrm{~V}
$$

b) $\mathrm{Vin}=2 \mathrm{~V}$

$$
\begin{aligned}
& I_{b}=\left(\frac{2-0.7}{1 \mathrm{k}}\right)=1.3 \mathrm{~mA} \\
& I_{c}=\beta I_{b}=26 \mathrm{~mA} \\
& V_{c e}=10 \mathrm{~V}-110 \Omega \cdot 26 \mathrm{~mA}=7.14 \mathrm{~V}
\end{aligned}
$$

c) $\operatorname{Vin}=10 \mathrm{~V}$

$$
\begin{aligned}
& I_{b}=\left(\frac{10-0.7}{1 k}\right)=9.3 m A \\
& \beta I_{b}=186 \mathrm{~mA}>91 \mathrm{~mA} \quad(\text { saturated) } \\
& V_{c e}=0.2 \mathrm{~V} \\
& I_{c}=\max \left(I_{c}\right)=\left(\frac{10 \mathrm{~V}-0.2 \mathrm{~V}}{110 \Omega}\right)=89 \mathrm{~mA}
\end{aligned}
$$

Transistor Switch

Assume a 3904 NPN transistor with the following specifications (available in room 211)

- $\quad \mathrm{Vbe}=0.7 \mathrm{~V}$
Vce(sat) $=0.2 \mathrm{~V}$
$\max (\mathrm{Ic})=200 \mathrm{~mA}$
$\beta=200$

6) Design a circuit to meet the following requirements:

- Input: 0 V or 5 V DC, capable of up to 20 mA
- Output: 5V DC Motor which draws at most 200mA
- Relationship:
- 0 V in results in 0 V across the motor, $+/-0.5 \mathrm{~V}$
- 5 V in results in 5 V across the motor, $+/-0.5 \mathrm{~V}$

To drive the motor, connect it between 5 V and ground. This draws at most 200 mA .
Break the path to ground with a transistor. Choose the resistor, Rb , so that the transistor turns

- Off when Vin $=0 \mathrm{~V}$
- Saturated when Vin $=5 \mathrm{~V}$

Off: Easy. Vin $=0$ sets $\mathrm{Ib}=0$ turning off the transistor
Saturated:

$$
\begin{aligned}
& \beta I_{b}>I_{c} \\
& I_{b}>\frac{200 \mathrm{~mA}}{200}=1 \mathrm{~mA}
\end{aligned}
$$

Let $\mathrm{Ib}=2 \mathrm{~mA}$

$$
R_{b}=\left(\frac{5 V-0.7 V}{2 m A}\right)=2150 \Omega
$$

