ECE 320 - Homework \#6

H-Bridge, DC to DC Converters. Due Monday, October 2nd, 2017

H-Bridge

1) Assume $\beta=100$ (worst case) for each transistor. Determine the currents and voltages for the following H-bridge

First, compute the base currents

$$
\begin{aligned}
& \left(\frac{5-0.7 \mathrm{~V}}{2 k}\right)=2.15 \mathrm{~mA} \\
& \beta I_{b}=215 \mathrm{~mA}
\end{aligned}
$$

This leg allows 215mA to flow
$\left(\frac{5-0.7}{10 \mathrm{k}}\right)=0.43 m A$
$\beta I_{b}=43 \mathrm{~mA}$
This leg allows 43mA to flow

The 25 Ohm load limits the current to

$$
I_{\max }=\left(\frac{5 V-0.2 V-0.2 V}{25 \Omega}\right)=184 m A
$$

The smallest current wins:
The current through the load is 43 mA

The lower left transistor is saturated:

$$
\beta I_{b}>I_{c}
$$

$$
215 \mathrm{~mA}>43 \mathrm{~mA}
$$

meaning

$$
\text { Vce }=0.2 \mathrm{~V}
$$

2) Redesign the above circuit to meet the following requirements:

Input:

- Four binary signals, ABCD, each $0 \mathrm{~V} / 5 \mathrm{~V}$, capable of driving up to 25 mA

Output:

- 25 Ohm load

Relationship:

- Inputs ABCD can cause the load to see
- $+200 \mathrm{~mA}+/-30 \mathrm{~mA}$
- $-200 \mathrm{~mA} \quad+/-30 \mathrm{~mA}$
- 0 mA

Solution:
Assume the transistors are saturated or off. The voltage drops should be 0.2 V , giving

$$
I_{\text {load }}=\left(\frac{5 V-0.2 V-0.2 \mathrm{~V}}{25 \Omega}\right)=184 \mathrm{~mA}
$$

To saturate the transistors, you need at least 1.84 mA flowing in the base. Let $\mathrm{Ib}=3 \mathrm{~mA}$ to be safe.

$$
R_{b}=\left(\frac{5 V-0.7 V}{3 m A}\right)=1433 \Omega
$$

3) Check your design in PartSim (or similar program) for the three modes of operation in the requirements Forward: +184 mA (computed), +187 mA (simulated)

Reverse: -184mA (comptued), -187 mA (simulated)

Off: All transistors turned off

- 0 mA computed
- 0.024 pA simulated

Lab)

4) Build your redesigned circuit in lab and verify its operation. For the load, use

- A DC motor, or
- An 8 Ohm speaker (with 16 Ohms added to it)

Analysis:

5) For the above DC to DC converter, determine

V1: DC Value

$$
V_{1 d c}=0.4 \cdot 12 \mathrm{~V}+0.6 \cdot(-0.7 \mathrm{~V})=4.38 \mathrm{~V}
$$

V1: AC Value

$$
V_{1 p p}=12.7 V_{p p}
$$

V2: DC. Same as V1

$$
V_{2 d c}=4.38 \mathrm{~V}
$$

V2: AC

$$
\begin{aligned}
& V_{2 p p}=\left(\frac{-j 53 \mid 100}{-j 53 \mid 1100+j 628}\right) V_{1 p p} \\
& V_{2 p p}=(0.0798) \cdot 12.7 V_{p p} \\
& V_{2 p p}=1.0131 V_{p p}
\end{aligned}
$$

Design:

6) Redesign the above DC to DC converter to meet the following requirements:

- Input: +12VDC, capable of 3A
- Output: 100 Ohm resistor
- Relationship: The voltage at V 2 under load is +5 V with 100 mV pp ripple.

Duty Cycle: 44.88\%

$$
\begin{aligned}
& 12 V \cdot X-0.7 V \cdot(1-X)=5 V \\
& X=\frac{5.7}{12.7}=0.488
\end{aligned}
$$

For the ripple to go from 12.7 Vpp to 0.1 Vpp ,

$$
\begin{aligned}
& \left(\frac{1}{\omega C}\right)=\frac{0.1 V_{p p}}{12.7 V_{p p}} \\
& \omega^{2} L C=127
\end{aligned}
$$

Let $\mathrm{L}=100 \mathrm{mH}$

$$
\mathrm{C}=32 \mathrm{uF}
$$

7) Check your design in PartSim:

Use a PNP transistr and a pulse generator to create the pulse input. Note that the transistor is on when the base voltage is 0 V , so the on-time is 55.12% (transistor is on 44.88%)
$C=0.0001 \mathrm{mF}$: This shows the ripple due to the inductor alone (mostly).

- The DC voltage is 5.00 V as desired
- The ripple is 3.03 Vpp

$C=32 u F$
PartSim crashes
$\mathrm{C}=10 \mathrm{uF}: 400 \mathrm{mVpp}$ ripple (but C is 3.2 x too small, so the ripple should be 3.2 x larger than expected)

