ECE 320 - Homework \#7

DC to AC Converters, Semiconductor Relays, Op-Amps. Due Monday, October 9th, 2017

DC to AC Converter

Assume an H -bridge outputs the following voltatge to an AC motor:

- +10 V for $3 / 8$ th of the time
- -10 V to $3 / 8$ th of the time
- 0 V inbetween

1) Determine the Fourier transform for this waveform out to the 3rd harmonic

First, input $y(t)$

```
-->t = [0:0.001:1]';
-->y = 10*(t<3/8) - 10*(t>4/8).*(t<7/8);
-->plot(t,y)
```

Next, compute the Fourier coefficients:

```
-->a1 = 2*mean(y .* sin(2*%pi*t))
    10.842759
-->a2 = 2*mean(y .* sin(2*2*%pi*t))
    - 7.240D-16
-->a3 = 2*mean(y .* sin(3*2*%pi*t))
    0.6067714
-->b1 = 2*mean(y .* cos(2*%pi*t))
    4.5111977
-->b2 = 2*mean(y .* cos(2*2*%pi*t))
    0.0199800
-->b3 = 2*mean(y .* cos(3*2*%pi*t))
    1.4848558
```

Now check if the Fourier series matches $\mathrm{y}(\mathrm{t})$

```
-->y1 = a1*sin(2*%pi*t) + b1*cos(2*%pi*t);
-->y2 = y1+ a2*sin(2*2*%pi*t) + b2*cos(2*2*%pi*t);
-->y3 = y2+ a3*sin(3*2*%pi*t) + b3*cos(3*2*%pi*t);
-->plot(t,y,t,y1,t,y2,t,y3)
```


$y(t)$ (blue) and its Fourier Series approximation taken out to 1 harmonic (red) and 3 harmonics (green)
2) Determine the efficiency of this DC to AC converter

```
-->mean(y.^2)
    74.825175
-->mean(y1.^2)
    68.909601
-->mean(y1.^2) / mean(y .^ 2)
    0.9209414
```

This A/D converter is 92% efficient

Semiconductor Relay

3) Determine the voltages at V1 and V2 (DC and AC) assuming a firing angle of 20 degrees V1 DC:

$$
\begin{aligned}
& V_{1 d c}=18.6 \cdot \frac{1}{\pi} \int_{\pi / 9}^{\pi} \sin (t) d t \\
& V_{1 d c}=18.6 \cdot\left(\frac{1+\cos \left(\frac{\pi}{9}\right)}{\pi}\right)=11.484 \mathrm{~V}
\end{aligned}
$$

V1 AC:

$$
\max =18.6 \mathrm{~V}
$$

$$
\min =-0.7 \mathrm{~V}
$$

$V_{1 a c}=19.3 V_{p p}$
V2 DC
same as V1
$V_{2 d c}=11.484 \mathrm{~V}$
V2 AC:
The frequency at V1 is 120 Hz , so

$$
\begin{aligned}
& Z_{L}=j \omega L=j 6280 \\
& Z_{C}=\frac{1}{j \omega C}=-j 1.59 \Omega
\end{aligned}
$$

The ripple at V2 is then

$$
V_{2 p p}=\left(\frac{-j 1.59| | 100}{-j 1.59| | 100+j 6280}\right) \cdot 12.9 V_{p p}=0.0033 V_{p p}
$$

4) Determine the firing angle, L, and C so that

- The DC voltage at V2 is 5 V
- The ripple at V2 is 200 mVpp

Firing Angle:

$$
\begin{aligned}
& \frac{1}{\pi} \int_{\theta}^{\pi} 18.6 \sin (t) d t=5 V \\
& \frac{18.6}{\pi}(1+\cos (\theta))=5 \\
& \theta=98.9^{0}
\end{aligned}
$$

The ripple at V 1 is 19.07 V

$$
\mathrm{V} 1 \mathrm{pp}=18.37 \mathrm{~V}+0.7 \mathrm{~V}=19.07 \mathrm{Vpp}
$$

Let L reduce the ripple by 10 x

$$
\begin{aligned}
& \omega L=10 R=1000 \\
& L=\frac{1000}{754}=1.32 H
\end{aligned}
$$

This makes the ripple at V2 $1.907 \mathrm{~V} p$. To reduce this to 200 mVpp

$$
\begin{aligned}
& \frac{1}{\omega C}=\frac{0.2 V_{p p}}{1.907 V_{p p}} R=0.1049 R=10.49 \Omega \\
& C=\frac{1}{754 \cdot 10.49 \Omega}=126 \mu F
\end{aligned}
$$

Final Design:

- Firing Angle $=98.9$ degrees
- $\mathrm{L}=1.32 \mathrm{H}$
- $\mathrm{C}=126 \mathrm{uF}$

Buck Converter:

The DC servo motors in the lab have the following characterisics

- $\mathrm{Ra}=24$ Ohms
- $\mathrm{La}=12 \mathrm{mH}$

5) Determine the DC voltage at Y and the peak-to-peak voltage at Y (which is also the current through the DC motor) for a duty cycle of

- 25%
- 50%
- 75\%

DC Voltage at V1

$$
\begin{aligned}
& V_{25 \%}=0.25 \cdot 8.6 \mathrm{~V}+0.75 \cdot(-0.7 \mathrm{~V})=1.625 \mathrm{~V} \\
& V_{50 \%}=0.5 \cdot 8.6 \mathrm{~V}+0.5 \cdot(-0.7 \mathrm{~V})=3.95 \mathrm{~V} \\
& V_{75 \%}=0.75 \cdot 8.6 \mathrm{~V}+0.25 \cdot(-0.7 \mathrm{~V})=6.275 \mathrm{~V}
\end{aligned}
$$

DC Votlage at V2:

$$
V_{2}=\left(\frac{10}{10+24}\right) V_{1}=0.29 V_{1}
$$

25\%: 478mV
50\% 1.16 V
75\%: 1.84V
AC Voltage: Won't change

$$
\begin{aligned}
& V_{y}=\left(\frac{10}{10+24+j \omega L}\right) 9.3 V_{p p} \\
& V_{y}=\left(\frac{10}{34+j 753.6}\right) 9.3 V_{p p} \\
& V_{y}=0.123 V_{p p}
\end{aligned}
$$

6) Check your calculatins in PartSim. Compare the results to your comutations.

50% Duty Cycle: 1.15 V (avg), 183 mV pp

75% Duty Cycle: 1.796 V (avg), 96 mV pp
Comparing to analysis results:

	25% Duty Cycle		50% Duty Cycle		75% Duty Cycle	
	Vdc	Vac	Vdc	Vac	Vdc	Vac
Calculated	0.478 V	123 mVpp	1.16 V	123 mVpp	1.84 V	123 mVpp
Simulated	0.492 V	141 mVpp	1.15 V	183 mVpp	1.796 V	96 mVpp

7) (Lab): Build the above circuit in lab and measure the voltage at Y (DC and AC) with the motor stalled (hold the motor so it doesn't spin) with a duty cycle of $25 \% / 50 \% / 75 \%$. Compare the results to your computations and simulation results.
8) (just for fun): Let the motor spin freely and measure the voltage at Y (DC and AC). Note: This won't match up with your computations or simulations due to the back emf of the motor.

Term Project

Propose a project for your term project. It must include at least two different circuits we cover in ECE 320.
9a) Overall Requirements: Specify the

- Inputs
- Outputs
- How they relate

9b) Project Breakdown. Show how you can split this overall design into 2 or more sections with each section being a circtuit we cover in ECE 320.

