ECE 320 - Final pt 1: Name

Semiconductors and Diodes. October 26, 2018

Semiconductors

1a) What is meant by a p-type semiconductor?

1b) For metals, the resistance increases as temperature increases. For semiconductors, the resistance decreases as temperature increases. Why?

1c) Why can current flow p to n in a pn junction but not n to p?

Diodes: Nonlinear Model

2) Assume the VI characteristics for a diode are

$$V_d = 0.052 \ln\left(\frac{I_d}{10^{-8}} + 1\right) \quad I_d = 10^{-8} \left(\exp\left(\frac{V_d}{0.052}\right) - 1\right)$$

Write 6 equations for 6 unknowns (V1, V2, V3, Id1, Id2, Id3}

V1	V2	V3	Id1	Id2	Id3

3) Assume ideal silicon diodes (Vf = 0.7V). Determine the currents for the following diode circuit

I1	I2	I3	I4	I5	I6

5)	For the following AC to I	DC converter, determine	the AC and DC voltages	at V1 and V2
2)	1 of the following file to i		the ric and De ronages	at i i and i 2

V	/1	V2		
DC (mean(V1))	AC (V1pp)	DC (mean(V2))	AC (V2pp)	

6) For the following DC to DC converter, determine the AC and DC voltages at V1 and V2

V	/1	V	/2
DC (mean(V1))	AC (V1pp)	DC (mean(V2))	AC (V2pp)

ECE 320 - Final pt 2: Name

Transistors and Op-Amps. October 29, 2018

1) **Transistor Theory.** The VI characteristics for an NPN transistor are shown below. Draw the load-line for the circuit below and determine the Q-point (Vce, Ic) for Vin = 0V, 5V, and 10V.

Load Line	(a) Q-Point for $Vin = 0$	(b) Q-Point for $Vin = 5V$	(c) Q-Point for $Vin = 10V$
show on graph	show on graph	show on graph	show on graph

2) Transistor Switch: An NPN transistor is to turn on and of a 5W LED with a 0V / 5V input:

Input: 0V / 5V DC source capable of driving up to 20mA

Output: 5W white LED

Relationship:

- Vin = 0V: Id = 0mA
- Vin = 5V: Id = 1.5A

Determine the resistors for the following circuit. Assume an ideal silicon transistor with $\beta = 100$

min value of Rb	max value of Rb	Rc

3) H-bridge. Determine the voltages and currents for the following H-bridge. Assume all transistors have

- $|V_{be}| = 0.7V$ $\beta = 100$ •
- •
- $\min(|V_{ce}|) = 0.2V$

I1	I2	I3	V4	V5

4) Schmitt Trigger. Design a circuit to turn on an off a DC servo motor based upon temperature:

- The motor turns on when T > 30C (303K)
- The motor turns off when T < 25C (298K)

Assume a thermistor with the characteristics of

$$R = 1000 \cdot \exp\left(\frac{3905}{T} - \frac{3905}{298}\right) \,\Omega$$

where T is the temperature in degrees Kelvin. Assume

Transistor:

Op-Amp

- Vbe = 0.7V
- Vce(sat) = 0.2V
- $\beta = 100$

- rail to rail (output goes 0V to 5V)

- max output = 20mA

5) DTL OR Gate: A DTl NOR gate is connected to five other gates (modeled as five 50k resistors at the output). Determine the logic levels for this gate

6) Fourier Transforms: A 20% duty cycle, 20Vp, 100Hz square wave drives a circuit. Determine the DC and AC terms (1st harmonic) for this waveform.

DC:
$$X_0 = \frac{1}{T} \int_0^T x(t) \cdot dt$$
 AC: $X_1 = \frac{2}{T} \int_0^T x(t) \cdot e^{-j\omega_0 t} \cdot dt$
 $\omega_0 = \frac{2\pi}{T}$

DC Term	AC Term (100Hz component)
Xo (Volts)	2 X1 (Vpp)

