ECE 320 - Homework \#8

Schmitt Triggers, Boolean Logic, DTL Logic. Due Monday, October 15th, 2018

Comparitors and Schmitt Triggers

A temperature sensor has the following characteristics:

$$
R=1000 \cdot \exp \left(\frac{3905}{T}-\frac{3905}{298}\right) \Omega
$$

where T is the temperture in degrees Kelvin.

1) Design a circuit which outputs

- $\mathrm{V} 2=0 \mathrm{~V}$ for $\mathrm{T}<15 \mathrm{C}$
- $\mathrm{V} 2=5 \mathrm{~V}$ for $\mathrm{T}>15 \mathrm{C}$

2) Design a circuit with hysteresis which outputs

- $\mathrm{V} 2=0 \mathrm{~V}$ for $\mathrm{T}<15 \mathrm{C}$
- $\mathrm{V} 2=5 \mathrm{~V}$ for $\mathrm{T}>20 \mathrm{C}$
- No change for $15 \mathrm{C}<\mathrm{T}<20 \mathrm{C}$

3) Build these two circuits in lab connected to a TIP112 NPN transistor to turn on and off a DC motor or 8 Ohm speaker (your pick). Using a potentiometer intead of the thermistor, (easier to adjust), determine the following for the compatitor and Schmitt Trigger:

- What resistance (or voltage) does the output jump to +5 V ?
- What resistance (or voltage) does the output jump to -5 V

Problem 1-3: Turn on and off a speaker and/or DC motor using a comparitor and Schmitt Trigger.

Boolean Logic:

4) Determine a circuit using NAND gates to implement the following function (i.e. circle the ones)
5) Determine a circuit using NOR gates to implement the following function (i.e. circle the zeros)

$Y=f(A, B, C, D)$		CD			
AB		00	01	11	10
	00	0	0	1	1
	01	1	1	0	1
	11	X	x	x	x
	10	1	1	x	x

DTL Logic:

6) Determine the voltages and currents for the following DTL AND gate. Assume 3904 transistors

- $\beta=200$
- $V_{c e(s a t)}=0.2 \mathrm{~V}$
- $V_{b e}=0.7 \mathrm{~V}$

7) Determine the voltages and currents for the previous circuit when the input voltages (on the left) are 0.1 V and 0.0 V
8) Check your results for problem 6 and 7 using PartSim.

Problem 6-8: For problem \#8, replace the 5 V and 4.9 V input voltages with 0.1 V and 0.0 V

