ECE 320-Quiz \#6 - Name

DC to AC Converters, SCR's, Operational Amplfiers. October 11, 2018

1) The output for a $D C$ to $A C$ converter with a period of 2π is

$$
x(t)=\left\{\begin{array}{cc}
10 \mathrm{~V} & -0.5<t<0.5 \\
0 \mathrm{~V} & \text { otherwise }
\end{array}\right.
$$

Determine

- The energy in the signal (assuming it goes across a 1 Ohm resistor)
- The 1st harmonic (sine term will be zero: it's an even function), and
- The energy in the 1 st harmonic (assuming it goes across a 1 Ohm resistor)

Total Energy in the signal (Watts)	1st Harmonic (cosine term) (Volts)	Energy in the 1st harmonic (Watts)
$\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2}(t) \cdot d t$	$a_{1}=\frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \cdot \cos (t) \cdot d t$	$\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(a_{1} \cos (t)\right)^{2} d t$

2) An AC to DC converter uses semiconductor relays (SCR) with a firing angle of 37 degrees. Determine the voltages at V1 and V2. Note that

- $V_{1}(D C)=\left(\frac{V_{p}}{\pi}\right)(1-\cos \theta)$
θ = firing angle
- frequency at V1 $=120 \mathrm{~Hz}(754 \mathrm{rad} / \mathrm{sec})$

V1		V2	
DC: V1	AC: V1pp	DC: V2	AC: V2pp

3) Determine the firing angle, C, and R so that the following $A C$ to $D C$ converter has

- 5.00 V at V 2
- 75 mA current draw, and
- 1 Vpp ripple at V 2

Note that

- $V_{1}(D C)=\left(\frac{V_{p}}{\pi}\right)(1-\cos \theta) \quad \theta=$ firing angle
- frequency at V1 $=120 \mathrm{~Hz}(754 \mathrm{rad} / \mathrm{sec})$

Firing Angle	C	R

4) Write the voltage node equations for the following op-amp circuit (non-ideal op-amp)

5) Write the voltage node equations for the following op-amp circuit (assume and ideal op-amp)

