ECE 320 - Solution to Homework \#2

Semiconductors, PN Junction, Diode VI Characteristics. Due Wednesday, September 5th, 2018

Semiconductors

1) Why does the resistance of silicon decrease as temperature goes up?

As temperature goes up, more and more holes / electron pairs are created due to thermal energy. More charge carriers make the resistance less and less.
2) What doping do you need to make an 0603 resistor have a resistance of 1000 Ohms? The dimensions of an 0603 resistor are

$$
\begin{aligned}
& \mathrm{L}=1.6 \mathrm{~mm}, \mathrm{~W}=0.8 \mathrm{~mm}, \mathrm{H}=0.45 \mathrm{~mm} \\
& R=\frac{\rho L}{A} \\
& 1000 \Omega=\frac{\rho \cdot 0.16 \mathrm{~cm}}{0.08 \mathrm{~cm} \cdot 0.045 \mathrm{~cm}} \\
& \rho=22.5 \Omega \cdot \mathrm{~cm} \\
& \sigma=\frac{1}{\rho}=0.0444 \frac{1}{\Omega \cdot \mathrm{~cm}} \\
& \sigma=n q \mu
\end{aligned}
$$

If doped with Boron (p-type)

$$
\begin{aligned}
& \sigma=0.0444=n_{p}\left(1.6 \times 10^{-19} C\right)(500) \frac{\mathrm{cm}^{2}}{\mathrm{Vs}} \\
& n_{p}=5.55 \cdot 10^{14} \frac{\mathrm{atoms}}{\mathrm{cc}}
\end{aligned}
$$

If doped with Phosphorus (n-type)

$$
\begin{aligned}
& \sigma=0.0444=n_{n}\left(1.6 \times 10^{-19} C\right)(1300) \frac{\mathrm{cm}^{2}}{V s} \\
& n_{n}=2.13 \cdot 10^{14} \frac{\mathrm{atoms}}{\mathrm{cc}}
\end{aligned}
$$

3) A thermistor has the following resistance - voltage relationship

$$
R=1000\left(\frac{3905}{T}-\frac{3905}{298}\right) \Omega
$$

where T is the temperature in degrees Kelvin. What is the resistance you'll read at

- -70C (dry ice)
- 0C (freezing point of water)
- 100C (boiling point of water)

At -70C (203K)

$$
R=460 \mathrm{k} \Omega
$$

At 0C (273K)

$$
R=3321 \Omega
$$

At 100C (373K)

$$
R=71.7 \Omega
$$

Thermistors are nice: they have a large change with temperature.

PN Junction

4) Why can current flow p to n but not n to p ?

Answer 1: p to n you are using majority carriers so the resistance is small. n to p you are using minority carriers, so the resistance is large.

Answer 2: Applying voltage p to n results in the depletion zone be reduced in size. If reduced to zero, current flows. Applying voltage n to p just makes the depletion zone bigger.

Answer 3: If you have enough voltage to overcome the potential energy barrier (0.7 V for silicon), current flows. If you don't, current doesn't (it doesn't have enough energy to overcome the potential energy barrier).

Diode VI Characteristics

Assume the VI characteristics for a diode are

$$
V_{d}=0.052 \cdot \ln \left(\frac{I_{d}}{10^{-8}}+1\right) \quad I_{d}=10^{-8}\left(\exp \left(\frac{V_{d}}{0.052}\right)-1\right)
$$

Problem 5 \& 6
5) Write the voltage node equations for the following circuit. Solve for V1

$$
\begin{align*}
& I_{d}=10^{-8}\left(\exp \left(\frac{V_{1}}{0.052}\right)-1\right) \tag{1}\\
& \left(\frac{V_{1}-10}{1000}\right)+I_{d}+\left(\frac{V_{1}}{1000}\right)=0 \tag{2}
\end{align*}
$$

Using fminsearch() in Matlab:

Create a function in Matlab:

```
function [ J ] = cost( z )
    V1 = z(1);
    Id = 1e-8 * exp( V1 / 0.052 - 1);
    e = (V1 - 10) / 1000 + Id + V1 / 2000;
    J = e^2;
    end
```

Solve using minesearch:

```
>> [V1, e] = fminsearch('cost',0.7)
V1 = 0.7641
e = 1.6873e-011
```

6) Check your answer in PartSim. (use Fairchild, Rectifier Diode, 1N4007)

Calculation	PartSim	Ideal Diode
0.7641 V	0.673 V	0.7 V

Problem 7, 8, 9
7) Write the voltage node equations for the following circuit. Solve for V1, V2, and V3

$$
\begin{aligned}
& I_{d 1}=10^{-8}\left(\exp \left(\frac{V_{1}-V_{2}}{0.052}\right)-1\right) \\
& I_{d 2}=10^{-8}\left(\exp \left(\frac{V_{2}-V_{3}}{0.052}\right)-1\right) \\
& I_{d 3}=10^{-8}\left(\exp \left(\frac{V_{3}}{0.052}\right)-1\right) \\
& \left(\frac{V_{1}-10}{100}\right)+I_{d 1}+\left(\frac{V_{1}-V_{2}}{220}\right)+\left(\frac{V_{1}-V_{3}}{330}\right)+\left(\frac{V_{1}}{470}\right)=0 \\
& -I_{d 1}+I_{d 2}+\left(\frac{V_{2}}{100}\right)+\left(\frac{V_{2}-V_{1}}{220}\right)=0 \\
& -I_{d 2}+I_{d 3}+\left(\frac{V_{3}-V_{1}}{330}\right)=0
\end{aligned}
$$

Create a function in Matlab to return the error in these equations

```
function [ J ] = cost( z )
    \(\mathrm{V} 1=\mathrm{z}(1)\);
    \(\mathrm{V} 2=\mathrm{z}(2)\);
    V3 = z(3);
    Id1 = 1e-8 * \(\exp ((V 1-V 2) / 0.052-1) ;\)
    Id2 \(=1 e-8\) * \(\exp ((V 2-V 3) / 0.052-1) ;\)
    Id3 \(=1 e-8\) * \(\exp ((V 3) / 0.052-1) ;\)
    \(\mathrm{e} 1=(\mathrm{V} 1-10) / 100+\mathrm{Id} 1+(\mathrm{V} 1-\mathrm{V} 2) / 220+(\mathrm{V} 1-\mathrm{V} 3) / 330+\mathrm{V} 1 / 470 ;\)
    \(\mathrm{e} 2=-\mathrm{Id} 1+\mathrm{Id} 2+\mathrm{V} 2 / 100+(\mathrm{V} 2-\mathrm{V} 1) / 220\);
    e3 = -Id2 + Id3 + (V1-V3)/330;
    \(\boldsymbol{J}=e 1^{\wedge} 2+e 2^{\wedge} 2+e 3^{\wedge} 2 ;\)
    end
```

Solve usin fminsearch()

```
>> [V, e] = fminsearch('cost',[2.1,1.4,0.7])
V =
    2.5588 1.6953 0.8446
e =
    3.1233e-009
```

8) Check your results in PartSim. (use Fairchild, Rectifier Diode, 1N4007)

Lab

9) Build this circuit and measure the voltages V1, V2, and V3. Use a 4004 diode (in room 211)

	V1	V2	V3
Calculations	2.5588	1.6953	0.8446
PartSim	2.28	1.51	0.76
Lab	2.32	1.55	0.78
Ideal Diode	2	1.4	0.7

