ECE 320 - Solution to Homework \#3

Ideal Diodes, Light Emitting Diodes. Due Monday, September 10th, 2018

Ideal Diodes

1) Assume ideal silicon diodes. Determine the voltages and currents for this circuit.

Problem 1

Assume the diode is on

$$
\mathrm{V} 1=0.7 \mathrm{~V}
$$

The currents must add to zero

$$
\begin{aligned}
& I_{\text {in }}=I_{\text {out }} \\
& \left(\frac{10 V-0.7 \mathrm{~V}}{1 k}\right)=I_{d}+\left(\frac{0.7 \mathrm{~V}}{2 k}\right) \\
& I_{d}=8.95 \mathrm{~mA}
\end{aligned}
$$

Check: If the diode is on, the current must be positive.
2) Assume ideal silicon diodes. Determine the voltages and currents for the following circuit when Vin = 10 V as shown.

Assume all diodes are on.

- $\mathrm{V} 3=0.7 \mathrm{~V}, \mathrm{~V} 2=1.4 \mathrm{~V}, \mathrm{~V} 1=2.1 \mathrm{~V}$

Current In = Current out

$$
\begin{aligned}
& \left(\frac{10 V-2.1 \mathrm{~V}}{100}\right)=I_{d 1}+\left(\frac{2.1 \mathrm{~V}-1.4 \mathrm{~V}}{220}\right)+\left(\frac{2.1 \mathrm{~V}-0.7 \mathrm{~V}}{330}\right)+\left(\frac{2.1 \mathrm{~V}}{470}\right) \\
& I_{d 1}=67.1 \mathrm{~mA} \\
& I_{d 1}+\left(\frac{2.1 \mathrm{~V}-1.4 \mathrm{~V}}{220}\right)=\left(\frac{1.4 \mathrm{~V}}{100}\right)+I_{d 2} \\
& I_{d s}=56.3 \mathrm{~mA} \\
& I_{d 2}+\left(\frac{2.1 \mathrm{~V}-0.7 \mathrm{~V}}{330}\right)=I_{d 3} \\
& I_{d 3}=60.5 \mathrm{~mA}
\end{aligned}
$$

Check: For the diodes to be on, Id1 > 0, Id2 > 0, Id3 > 0
3) Assume ideal silicon diodes. Determine the voltages and currents when Vin $=3 \mathrm{~V}$

Assume all diodes are on. This doesn't work since it results in

$$
\begin{aligned}
& \left(\frac{3 V-2.1 V}{100}\right)=I_{d 1}+\left(\frac{2.1 V-1.4 V}{220}\right)+\left(\frac{2.1 V-0.7 V}{330}\right)+\left(\frac{2.1 V}{470}\right) \\
& 9 m A=I_{d 1}+3.2 m A+4.2 m A+4.5 m A \\
& I_{d 1}=-2.9 m A
\end{aligned}
$$

You can't have negative current through a diode

Assume diode 1 is off, the other two are on. Solve for V1 using voltage nodes

$$
\begin{aligned}
& \left(\frac{V_{1}-3}{100}\right)+0+\left(\frac{V_{1}-1.4}{220}\right)+\left(\frac{V_{1}-0.7}{330}\right)+\left(\frac{V_{1}}{470}\right)=0 \\
& V_{1}=1.9532 V
\end{aligned}
$$

For the currents to balance:

$$
\begin{aligned}
& \left(\frac{3 V-1.95 V}{100}\right)=0 m A+\left(\frac{1.95 V-1.4 V}{220}\right)+\left(\frac{1.95 V-0.7 V}{330}\right)+\left(\frac{1.95 \mathrm{~V}}{470}\right) \\
& 10.46 m A=0 m A+2.51 m A+3.79 m A+4.16 m A
\end{aligned}
$$

The current through Id2 is negative however. This isn't correct.

Assume diode 2 is off:

$$
\begin{aligned}
& \left(\frac{V_{1}-3}{100}\right)+0+\left(\frac{V_{1}-0.7}{100}\right)+\left(\frac{V_{1}-0.7}{330}\right)+\left(\frac{V_{1}}{470}\right)=0 \\
& V_{1}=1.555 \mathrm{~V}
\end{aligned}
$$

Id 1 is then

$$
\left(\frac{3-V_{1}}{100}\right)=I_{d 1}+\left(\frac{V_{1}-\left(V_{1}-0.7\right)}{220}\right)+\left(\frac{V_{1}-0.7}{330}\right)+\left(\frac{V_{1}}{470}\right)
$$

$14.44 m A=I_{d 1}+3.18 m A+2.59 m A+3.30 m A$

$$
I_{d 1}=5.36 \mathrm{~mA}
$$

$$
\text { Id2 }=0 \text { (off) }
$$

$$
I_{d 3}=2.59 \mathrm{~mA}
$$

The Piranah RGB LEDs in lab have the following characteristics:

Color	Vf @ 20mA	$\mathrm{mcd} @ 20 \mathrm{~mA}$
red	2.0 V	10,000
green	3.2 V	10,000
blue	3.2 V	10,000

4) Design a circuit to drive these LEDs with a 10 V source to produce purple:

- Red $=5390$ mcd (53.9\%)
- Green $=1797$ mcd (17.97\%)
- Blue = 8164 mcd (81.64%)

Red:

$$
\begin{aligned}
& I_{r}=\left(\frac{5390 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=10.78 \mathrm{~mA} \\
& R_{r}=\left(\frac{10 \mathrm{~V}-2.0 \mathrm{~V}}{10.78 \mathrm{~mA}}\right)=742 \Omega
\end{aligned}
$$

Green:

$$
\begin{aligned}
& I_{g}=\left(\frac{1797 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=3.59 \mathrm{~mA} \\
& R_{g}=\left(\frac{10 \mathrm{~V}-3.2 \mathrm{~V}}{3.59 \mathrm{~mA}}\right)=1894 \Omega
\end{aligned}
$$

Blue:

$$
\begin{aligned}
& I_{b}=\left(\frac{8164 m c d}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=16.33 \mathrm{~mA} \\
& R_{b}=\left(\frac{10 \mathrm{~V}-3.2 \mathrm{~V}}{16.33 \mathrm{~mA}}\right)=416 \Omega
\end{aligned}
$$

5) Design a circuit to drive these LEDs with a 10 V source producing pink:

- \quad Red $=10,000 \mathrm{mcd}(100 \%)$
- \quad Green $=7773$ mcd (77.73\%)
- Blue $=9375$ mcd (93.75\%)

Red:

$$
\begin{aligned}
& I_{r}=\left(\frac{10,000 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=20 \mathrm{~mA} \\
& R_{r}=\left(\frac{10 \mathrm{~V}-2.0 \mathrm{~V}}{20 \mathrm{~mA}}\right)=400 \Omega
\end{aligned}
$$

Green:

$$
\begin{aligned}
& I_{g}=\left(\frac{7773 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=15.55 \mathrm{~mA} \\
& R_{g}=\left(\frac{10 \mathrm{~V}-3.2 \mathrm{~V}}{15.55 \mathrm{~mA}}\right)=437 \Omega
\end{aligned}
$$

Blue:

$$
\begin{aligned}
& I_{g}=\left(\frac{9375 m c d}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=18.75 \mathrm{~mA} \\
& R_{g}=\left(\frac{10 \mathrm{~V}-3.2 \mathrm{~V}}{18.75 \mathrm{~mA}}\right)=363 \Omega
\end{aligned}
$$

Pink Light
note: If you want to use two different colors, please do so. You can see the intensity of each color (RGB) on the web site:
https://www.rapidtables.com/web/color/color-wheel.html

Lab:
6) Build these RGB LED circuits and measure the voltages (and compute the currents)

