ECE 320 - Homework \#4 (rev 2)

AC to DC Converters, Max/Min Circuits, Clipper Circuits. Due Monday, September 17th, 2018

AC to DC Circuits

1) Determine the DC voltage and the peak-to-peak ripple at V1 and V2 for the following AC to DC circuit.

AC Wall Transformer

Peak at V1 $=19.3 \mathrm{~V}$ (20Vp minus 0.7 V from the diode)
DC Current:

$$
I=\left(\frac{19.3 V}{1278 \Omega}\right)=15.10 \mathrm{~mA}
$$

DC voltage at V2:

$$
V_{2}=\left(\frac{1 k}{1 k+278}\right) \cdot 19.3 V=15.1 V
$$

AC: Ripple at V1

$$
\begin{aligned}
& I=C \frac{d V}{d t} \\
& 15.1 m A=500 \mu F \cdot \frac{d V}{1 / 60 \mathrm{~s}} \\
& d V=503 m V_{p p}
\end{aligned}
$$

Ripple at V2:

$$
\begin{aligned}
& 5 \mu F \rightarrow \frac{1}{j \omega C}=-j 530 \Omega \\
& 10 H \rightarrow j \omega L=j 3770 \Omega
\end{aligned}
$$

Adding the capacitor and resistor in parallel:

$$
\begin{aligned}
& Z_{1}=\left(\frac{1}{1000}+\frac{1}{-j 530}\right)^{-1}=219-j 413 \Omega \\
& V_{2}=\left(\frac{219-j 413}{(219-j 413)+(278+j 3770)}\right) \cdot 0.503 V_{p p} \\
& V_{2}=69 m V_{p p}
\end{aligned}
$$

(angle doesn't matter - it tells you that the peak in V2 is delayed from the peak in V1)

Net Result:

. $\mathrm{V} 1=\underset{503 \mathrm{mVpp}}{19.3 \mathrm{~V}(\text { max })} \quad \mathrm{V} 2=\underset{69 \mathrm{mVpp}}{15.1 \mathrm{~V}(\mathrm{avg})}$

Check in PartSim (not requried)

Simulation Result: V1 (blue) and V2 (black) V1 = 19.206V (max), 464mVpp
$\mathrm{V} 2=14.86 \mathrm{~V}(\mathrm{avg}), 44 \mathrm{mV} p \mathrm{p}$
2) Determine R, L, and C so that the circuit

- Draws 10 mA at the load
- Has a 2 Vpp ripple at V 1 , and
- Has a 500 mV pp ripple at V2

Solution: For 10 mA

$$
\begin{aligned}
& R_{\text {total }}=\frac{19.3 \mathrm{~V}}{10 \mathrm{~mA}}=1930 \Omega \\
& R_{\text {load }}=1930 \Omega-278 \Omega=1652 \Omega
\end{aligned}
$$

For 2Vpp ripple at V1

$$
I=C \frac{d V}{d t}
$$

$$
10 m A=C \frac{2 V_{p p}}{1 / 60 s}
$$

$$
C=83.3 \mu F
$$

For 500 mVpp ripple at V 2 , assume $\mathrm{C} 2=0$. The ripple due to the inductor is

$$
\begin{aligned}
& V_{2}=\left(\frac{1652}{1652+278+j 3770}\right) \cdot 2 V_{p p} \\
& V_{2}=0.78 V_{p p}
\end{aligned}
$$

To bring this down to 0.5 Vpp , the capacitor should be

$$
\begin{aligned}
& Z_{C}=\left(\frac{0.5 \mathrm{~V}}{0.78 V}\right) \cdot 1652 \Omega \\
& Z_{c}=1058 \Omega=\frac{1}{j \omega C} \\
& C=2.5 \mu F
\end{aligned}
$$

3) Check your answer for problem \#2 in PartSim using a 4007 diode.

	V1				V2		
	Calculated prob 2	Simulated prob 3	Measured prob 9	Calculated prob 2	Simulated prob 3	Measured prob 9	
DC	19.3 V (max)	19.288 V		16.52 V	15.759 V		
AC	2 Vpp	1.751 Vpp		500 mVpp	356 mVpp		

Max/Min:

4) Determine the voltages and currents for the following max/min circuit. What function does this circuit implement? $Y=f(A, B, C, D)$

$$
\begin{aligned}
& \mathrm{Y}=\min (\max (\mathrm{A}, \mathrm{~B}), \max (\mathrm{C}, \mathrm{D})) \\
& \mathrm{Y}=(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})
\end{aligned}
$$

5) Check your results in PartSim

Clipper Circuits:

6) Design a circuit which meets the following requirements:

- Input: -10 .. +10 V , capable of 100 mA
- Output: 1 k resistor
- Relationship:

$$
V_{\text {out }}=\left\{\begin{array}{cc}
+4 V & V_{\text {in }}>+4 V \\
V_{\text {in }} & -3 V<V_{\text {in }}<+4 V \\
-3 V & V_{\text {in }}<-3 V
\end{array}\right.
$$

7) Design a circuit to approximate the following function subject to the following requirements:

- Input: 0 .. 10 V , capable of 100 mA
- Output: 100 k resistor
- Relationship: Graph below, +/- 200mV

Step 1: Draw in straight lines to approximate the waveform. If the line deviates by more than 200 mV , add a new line (shown in red).

Step 2: Add in the stages
Stage 1: Slope = 1.44

$$
\begin{aligned}
& \text { gain }=1+\frac{R_{0}}{1 k} \\
& R_{0}=440 \Omega
\end{aligned}
$$

Stage 2: Add a resistor at the output of the op-amp which is much smaller than the load. (1k)
Turns on when $\mathrm{Y}=2.6 \mathrm{~V}$. Make the zener diode 2.6 V .
The slope is 0.686

$$
\begin{aligned}
& 0.686=1.44 \cdot\left(\frac{R}{R+1000}\right) \\
& R=\left(\frac{\left(\frac{0.686}{1.44}\right)}{1-\left(\frac{0.686}{1.44}\right)}\right) 1000=909 \Omega \\
& R_{1}=909
\end{aligned}
$$

Stage 3:
Turns on when $\mathrm{Y}=5 \mathrm{~V}$. Make the zener diode 5 V .
The slope is 0.208

$$
\begin{aligned}
& R=\left(\frac{\left(\frac{0.208}{1.44}\right)}{1-\left(\frac{0.208}{1.44}\right)}\right) 1000=168.8 \Omega \\
& R=R_{1} \| R_{2} \\
& R_{2}=207 \Omega
\end{aligned}
$$

8) Check your design in PartSim.

Lab:
9) Build one of these circuits in lab and collect data to verify your design.

