## ECE 320 - Solution to Homework \#5

Transistor Theory, Transistors used as a Switch, H-Bridge Due Monday, September 24th, 2018

1) The VI characteristics for a transistor are shown below:

- What is the current gain, $\beta$ ? 80
- Label the Off / Saturated / Active regions. shown on graph


2) Draw the load line for the following circuit. Mark on the load line the operating point (termed Q-point) when

Vin $=0 \mathrm{~V}$

$$
I_{b}=0
$$

$\mathrm{Vin}=5 \mathrm{~V}$

$$
\begin{aligned}
& I_{b}=\left(\frac{5 V-0.7 \mathrm{~V}}{10 \mathrm{k}}\right)=0.43 \mathrm{~mA} \\
& \beta I_{b}=34.4 \mathrm{~mA} \quad V_{c e}=10-130 I_{c}=5.528 \mathrm{~V}
\end{aligned}
$$

$\mathrm{Vin}=10 \mathrm{~V}$

$$
\begin{aligned}
& I_{b}=\left(\frac{10 \mathrm{~V}-0.7 \mathrm{~V}}{10 \mathrm{k}}\right)=0.93 m A \\
& \beta I_{b}=74.4 m A \quad V_{c e}=10-130 I_{c}=0.328 \mathrm{~V}
\end{aligned}
$$



Problem 3-6: Assume a LM833 transistor (NPN) and LM837 (PNP) (\$0.04 each)

- $\beta=100$
- $\left|V_{c e: s a t}\right|=0.2 \mathrm{~V}$
- $\max \left(I_{c}\right)=200 m A$

3) Design a circuit to meet the following requirements (i.e. a transistor used as a switch)

- Input: $0 \mathrm{~V} / 5 \mathrm{~V}$ binary signal capable of 20 mA
- Output: DC Motor which draws $200 \mathrm{~mA} @ 10 \mathrm{~V}$
- Relationship:
- When Vin $=0 \mathrm{~V}, 0 \mathrm{~V}$ is applied to the motor
- When Vin $=5 \mathrm{~V}, 10 \mathrm{~V}$ is applied to the motor $+/-1 \mathrm{~V}$
$I_{c}=200 \mathrm{~mA} \quad$ (nothing to calculate - that's just how much the motor draws at 10 V ) $R_{\text {motor }}=\left(\frac{10 \mathrm{~V}}{200 \mathrm{~mA}}\right)=50 \Omega$

To saturate the transistor

$$
\begin{aligned}
& \beta I_{b}>I_{c} \\
& I_{b}>\frac{200 \mathrm{~mA}}{100}=2 \mathrm{~mA}
\end{aligned}
$$

Let $\mathrm{Ib}=4 \mathrm{~mA}$

$$
R_{b}=\left(\frac{5 V-0.7 V}{4 m A}\right)=825 \Omega
$$

4) Check your design in PartSim

Motor On: Vin $=5 \mathrm{~V}$


Motor Off (Vin $=0 \mathrm{~V}$ )


|  | On |  |  | Off |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Calculated <br> (prob 3) | Simulated <br> (prob 4) | Measured <br> (prob 5) | Calculated <br> (prob 3) | Simulated <br> (prob 4) | Measured <br> (prob 5) |
| Vb | 0.7 V | 0.887 V |  | 0 V | 8 nV |  |
| Ib | 4 mA | 4.98 mA |  | 0 mA | 10 pA |  |
| Vce | 0.2 V | 0.354 V |  | 10 V | 10 V |  |
| Ic | 196 mA | 198 mA |  | 0 mA | 50 pA |  |

5) Chck your design in lab.
6) Determine the voltages V1 and V2 for the following H-bridge


Problem 6 \& 7
First, find which transistors are on and which are off.
Next, find the base currents:
B: $\quad I_{b}=\left(\frac{10 V-0.7 \mathrm{~V}}{4 k}\right)=2.23 m A$

$$
\beta I_{b}=223 m A
$$

C: $\quad I_{b}=\left(\frac{10 \mathrm{~V}-0.7 \mathrm{~V}}{6 k}\right)=1.55 \mathrm{~mA}$

$$
\beta I_{b}=155 \mathrm{~mA}
$$

Load:

$$
\left(\frac{10 \mathrm{~V}}{50 \Omega}\right)=200 \mathrm{~mA}
$$

The smallest current wins (limits the overall current)

$$
I=155 m A
$$

7) Modify this circuit to meet the following requirements

- Input: A,B,C,D. 0/10V binary signals, capable of 20 mA
- Output: 50 Ohm resistor
- Relationship: By varying A,B,C,D, the voltage across the 50 Ohm resistor can be set to $+10 \mathrm{~V},-10 \mathrm{~V}$, and 0 V (+/1V)

The current you want is

$$
I=\left(\frac{10 \mathrm{~V}}{50 \Omega}\right)=200 \mathrm{~mA}
$$

To saturate the transistors

$$
\begin{aligned}
& \beta I_{b}>I_{c} \\
& I_{b}>\frac{200 \mathrm{~mA}}{100}=2 \mathrm{~mA}
\end{aligned}
$$

Let

$$
\begin{aligned}
& I_{b}=4 m A \\
& R_{b}=\left(\frac{10 V-0.7 V}{4 m A}\right)=2325 \Omega
\end{aligned}
$$

Let $\mathrm{Rb}=2200$ Ohms


