ECE 320 - Solution to Homework \#6

DC to DC Converters, DC to AC Converters. Due Monday, October 1st, 2018

DC to DC Converters (Buck Converters)

1) Determine the DC and AC votlages at V1 and V2 for the following Buck converter.

Problem 1 \& 2: Buck Converter for Analysis

V1(DC)

$$
\begin{aligned}
& V_{1}=0.6 \cdot 15 V+0.4 \cdot(-0.7 V) \\
& V_{1}=8.72 V
\end{aligned}
$$

V1(AC)
$V_{1}=15.7 V_{p p}$

V2(DC)

$$
V_{2}=\left(\frac{330}{330+71}\right) \cdot 8.72
$$

$$
V_{2}=7.1761 \mathrm{~V}
$$

V2(AC)

$$
\begin{aligned}
& L \rightarrow j \omega L=j 1407 \Omega \\
& C \rightarrow \frac{1}{j \omega C}=-j 99.47 \Omega \\
& 330 \|-j 99.47=27.48-j 91.18 \\
& v_{2}=\left(\frac{(27.48-j 91.18)}{(277.48-j 91.18)+(71+j 1407)}\right) 15.7 V_{p p} \\
& V_{2}=1.133 V_{p p}
\end{aligned}
$$

2) Modify this Buck converter so that for a 330 Ohm load

- $\mathrm{V} 2(\mathrm{DC})=5 \mathrm{~V}$
- $\mathrm{V} 2(\mathrm{AC})=100 \mathrm{mVpp}$

By voltage division, at DC

$$
\begin{aligned}
& V_{2}=\left(\frac{330}{330+71}\right) V_{1} \\
& V_{1}=6.0758 \mathrm{~V}
\end{aligned}
$$

The duty cycle to get this is

$$
\begin{aligned}
& V_{1}=6.0758 V=\alpha \cdot 15 V+(1-\alpha)(-0.7 V) \\
& \alpha=\left(\frac{6.7058}{15.7}\right)=0.4316
\end{aligned}
$$

You need a 43\% duty cycle.

For the ripple to be 100 mVpp
Let $\mathrm{L}=56 \mathrm{mH}$ (arbitrary - what we have in lab), $\mathrm{C}=0$

$$
\begin{aligned}
& v_{2}=\left(\frac{330}{330+71+j 1407}\right) \cdot 15.7 V_{p p} \\
& v_{2}=3.54 V_{p p}
\end{aligned}
$$

To reduce this to 100 mVpp

$$
\begin{aligned}
& \frac{1}{\omega C}=\left(\frac{100 \mathrm{mV}}{3.54 V}\right) 330 \Omega=9.31 \Omega \\
& C=4.27 u F
\end{aligned}
$$

Result:

43.16\% duty cycle

$L=56 \mathrm{mH}$
$\mathrm{C}=4.27 \mathrm{uF}$
3) Check your Buck converter in PartSim. Note: You'll probably need to use a transistor for this circuit

Circuit used for PartSim.
A pulse source with a period of $0.25 \mathrm{~ms}(4 \mathrm{kHz})$ and a pulse width of $0.1079 \mathrm{~ms}(43 \%$ of 0.25 ms$)$

Output waveform for V 1 (black) going from -0.646 V to +15 V (vs. -0.7 V and +15 V in calculations)

Output wavefor for V2. 130 mVpp (vs. 100 mVpp computed)
4) Lab: Build this Buck converter in lab Check your Buck converter in PartSim. Note: You'll probably need to use a TIP112 transistor for this circuit

Problem 3 \& 4: Buck Converter for Simulation and Test

	V 1		V 2	
	DC	AC	DC	AC
Calculated (problem 2)	8.72 V	15.7 Vpp	5.00 V	100 mVpp
Simulated (problem 3)	8.68 V	15.73 Vpp	5.15 V	130 mVpp
Measured (problem 4)	3.22 V	9.3 Vpp	2.49 V	200 mVpp

note:

- The function generator would only output 10.00 V max, resulting in the DC and AC signals at V1 and V2 being smaller than expected.
- Also, there was considerable noise on V2, resulting in the peak-to-peak measurements of V2 being larger than expected for problem 4

DC to AC Converters (Fourier Transform)

5) Determine the first 5 terms for the Fourier Series for the following waveform (V1 for problem \#1).

Plot V1(t) and it's Fourier Series approximation out to the 5th harmonic (20 kHz)

```
t = [1:10000]' / 10000;
x = 15*(t<0.6) - 0.7*(t>0.6);
t = t * 2*pi;
X0 = mean(x)
X0 = 8.7185
```

Note: Recall from phasors that

```
    a+jb\leftrightarrowa\operatorname{cos}(\omegat)-b\operatorname{sin}(\omegat)
X1 = 2*mean( y .* exp(-j*t) )
X1 = -2.9378 - 9.0413i
X2 = 2*mean(y .* exp(-2*j*t))
X2 = 2.3744-1.7252i
x3 = 2*mean(y .* exp(-3*t))
x3 = -1.5863 - 1.1524i
X4 = 2*mean(y .* exp(-4*j*t))
X4 = 0.7339 - 2.2593i
X5 = 2*mean(y .* exp(-5*j*t))
X5 = -0.0030 - 0.0000i
xf = X0 + real(X1)* cos(t) - imag(X1)*sin(t);
xf = xf + real(X2)* cos(2*t) - imag(X2)*sin(2*t);
xf = xf + real(X3)* cos(3*t) - imag(X3)*sin(3*t);
xf = xf + real(X4)*cos(4*t) - imag(X4)*sin(4*t);
xf = xf + real(X5)*cos(5*t) - imag(X5)*sin(5*t);
plot(t,x,t,xf)
```

Note that this is the same as

```
xf = X0;
xf = xf + real( X1 .* exp(j*t) );
xf = xf + real( X2 .* exp(2*j*t) );
xf = xf + real( X3 .* exp(3*j*t) );
xf = xf + real( X4 .* exp(4*j*t) );
xf = xf + real( X5 .* exp(5*j*t) );
plot(t,x,t,xf)
```


6) Determine the Fourier Series approximation for V2(t) for the circuit of problem \#1

Problem 5 \& 6: 60\% duty cycle square wave from problem \#1
Output $=$ Gain * Input

```
Y0 = (330 / (330 + 71)) * X0
```

Y0 = 7.1748
\% 4kHz
w = 2*pi*4000;
Zc $=1 /\left(j^{*} w^{*} 0.4 e-6\right)$;
ZL = j*w**.056;
$z=1 /(1 / Z c+1 / 330)$;
Y1 $=(Z /(Z+71+Z L))^{*} x 1$
$Y 1=-0.0365+0.6850 i$
\% kHz
w = 2 * 2*pi*4000;
Zc = 1/(j*w*0.4e-6);
ZL = j*w*0.056;
$Z=1 /(1 / Z c+1 / 330) ;$
$Y 2=(Z /(Z+71+Z L))^{*} x 2$
Y2 = -0.0470 + 0.0227i
\%12 kHz
w = 3 * 2*pi*4000;
$Z c=1 /\left(j^{*} w^{*} 0.4 e-6\right)$;
ZL = j*w*0.056;
$Z=1 /(1 / Z c+1 / 330)$;
Y3 = (Z / (Z + 71 + ZL))*x3
$Y 3=0.0113+0.0105 i$
\%16 kHz
w = 4 * 2*pi*4000;
Zc = 1/(j*w*0.4e-6);
ZL $=$ j*w*0.056;
$Z=1 /(1 / Z c+1 / 330) ;$
$\mathrm{Y} 4=(\mathrm{Z} /(\mathrm{Z}+71+\mathrm{ZL}))^{*} \mathrm{x} 4$
Y4 $=-0.0041+0.0097 i$

```
%20 kHz
w = 5 * 2*pi*4000;
Zc = 1/(j*W*0.4e-6);
ZL = j*W*0.056;
Z = 1/ ( 1/Zc + 1/330);
Y5 = (Z / (Z + 71 + j*W*0.056))*X5
Y5 = 8.4681e-006 +5.9800e-007i
t = [1:10000]' / 10000 * 2 * pi;
y = Y0 + real(Y1)*cos(t) - imag(Y1)*sin(t);
y = y + real(Y2)*}\operatorname{cos(2*t) - imag(Y2)*sin(2*t);
y = y + real(Y3)* cos(3*t) - imag(Y3)*sin(3*t);
y = y + real(Y4)* cos(4*t) - imag(Y4)*sin(4*t);
y = y + real(Y5)*cos(5*t) - imag(Y5)*sin(5*t);
plot(t,y)
```

Harmonic	$\mathbf{H z}$	$\mathbf{X (j w)}$	$\mathbf{G (j w)}$	$\mathbf{Y}(\mathbf{j w)}=\mathbf{G}(\mathbf{j w})$ * X(jw)
DC	0	8.7185	0.8229	7.1748
1	4 k	$-2.9378-9.0413 \mathrm{i}$	$-0.0673-0.0259 \mathrm{i}$	$-0.0365+0.6850 \mathrm{i}$
2	8 k	$2.3744-1.7252 \mathrm{i}$	$-0.0175-0.0031 \mathrm{i}$	$-0.0470+0.0227 \mathrm{i}$
3	12 k	$-1.5863-1.1524 \mathrm{i}$	$-0.0078-0.0009 \mathrm{i}$	$0.0113+0.0105 \mathrm{i}$
4	16 k	$0.7339-2.2593 \mathrm{i}$	$-0.0044-0.0004 \mathrm{i}$	$-0.0041+0.0097 \mathrm{i}$
5	20 k	$-0.0030-0.0000 \mathrm{i}$	$-0.0028-0.0002 \mathrm{i}$	$0.0000+0.0000 \mathrm{i}$

	V1		V2	
	DC	AC	DC	AC
Calculated (problem 1)	8.72 V	15.7 Vpp	7.17 V	100 mVpp
Simulated (problem 3)	8.68 V	15.73 Vpp	7.295 V	135 mVpp
Calcualted (problem 6)	8.72 V	15.7 Vpp	7.17 V	137 mVpp

