ECE 320 - Homework \#8

Schmitt Triggers, Boolean Logic, DTL Logic. Due Monday, October 15th, 2018

Comparitors and Schmitt Triggers

A temperature sensor has the following characteristics:

$$
R=1000 \cdot \exp \left(\frac{3905}{T}-\frac{3905}{298}\right) \Omega
$$

where T is the temperture in degrees Kelvin.

1) Design a circuit which outputs

- $\mathrm{V} 2=0 \mathrm{~V}$ for $\mathrm{T}<15 \mathrm{C}$
- $\mathrm{V} 2=5 \mathrm{~V}$ for $\mathrm{T}>15 \mathrm{C}$

At 15C (288K),

$$
\text { R = } 1576 \text { Ohms }
$$

Using a 1 k resistor for a voltage divider results in

$$
V_{a}=\left(\frac{R}{R+1000}\right) \cdot 5 V=3.059 V
$$

When temperature goes to infinity

- $R \rightarrow 0$
- $V_{a} \rightarrow 0$
- $V_{\text {out }} \rightarrow 5 \mathrm{~V}$

Connect to the - input for the inverse correlation

2) Design a circuit with hysteresis which outputs

- $\mathrm{V} 2=0 \mathrm{~V}$ for $\mathrm{T}<15 \mathrm{C}$
- $\mathrm{V} 2=5 \mathrm{~V}$ for $\mathrm{T}>20 \mathrm{C}$
- No change for 15C $<\mathrm{T}<20 \mathrm{C}$

At 15C (288K)

- $\mathrm{R}=1576$ Ohms
- $\mathrm{Va}=3.059 \mathrm{~V}$
- $\mathrm{Vo}=0 \mathrm{~V}$

At 20C (293K)

- $\mathrm{R}=1250$ Ohms
- $\mathrm{Va}=2.778 \mathrm{~V}$
- $\mathrm{Vo}=5 \mathrm{~V}$

The output increases when the input decreases. Connect to the - input to provide this negative correlation.

The gain you need is

$$
\text { gain }=\left(\frac{\text { change in output }}{\text { change in input }}\right)=\left(\frac{5 \mathrm{~V}-0 \mathrm{~V}}{3.059 \mathrm{~V}-2.778 \mathrm{~V}}\right)=17.8
$$

When the output is 0 V , you switch when the input is 2.778 V . Connect the offset to 2.778 V

3) Build these two circuits in lab connected to a TIP112 NPN transistor to turn on and off a DC motor or 8 Ohm speaker (your pick). Using a potentiometer intead of the thermistor, (easier to adjust), determine the following for the compatitor and Schmitt Trigger:

- What resistance (or voltage) does the output jump to +5 V ?
- What resistance (or voltage) does the output jump to -5V

Problem 1-3: Turn on and off a speaker and/or DC motor using a comparitor and Schmitt Trigger.

	Calculations	Measured
V1 when V2 goes to +5 V	2.778 V	
V1 when V2 goes to 0V	3.059 V	

Boolean Logic:

4) Determine a circuit using NAND gates to implement the following function (i.e. circle the ones)

$$
Y=A+B C^{\prime}+C D^{\prime}+B^{\prime} C
$$

5) Determine a circuit using NOR gates to implement the following function (i.e. circle the zeros)

		CD			
		00	01	11	10
	00	0	0	1	1
	01	1	1	0	1
	11	x	x	x	x
	10	1	1	x	x

$$
Y^{\prime}=A^{\prime} B^{\prime} C^{\prime}+B C D
$$

Use DeMorgain's theorem

$$
Y=(A+B+C)\left(B^{\prime}+C^{\prime}+D^{\prime}\right)
$$

Implement with NOR gates

DTL Logic:

6) Determine the voltages and currents for the following DTL AND gate. Assume 3904 transistors

- $\beta=200$
- $V_{c e(s a t)}=0.2 \mathrm{~V}$
- $V_{b e}=0.7 \mathrm{~V}$

8) Checking in PartSim

9) Determine the voltages and currents for the previous circuit when the input voltages (on the left) are 0.1 V and 0.0 V

10) Check your results for problem 6 and 7 using PartSim.

