ECE 320 - Final - Name

Part 1: Semiconductors and Diodes. Fall 2019

1) Semiconduuctors and pn junctions

What are holes and electrons?

Why can current flow p to n for a diode but not n to p ?

2) Load Lines

Draw the load line for the following circuit. From the load line, determine the operation point (Id, Vd)

Load Line	Vd	Id
show on graph		

3) Ideal Diode

Assume ideal silicon diodes $(\mathrm{Vf}=0.7 \mathrm{~V})$. Determine the votlages and currents for the following circuit

V1	V2	V3	Id1	Id2	Id3

4) AC to DC Converter

Determine the voltages at V1 and V2 (both DC and AC). Assume ideal silicon diodes ($\mathrm{Vf}=0.7 \mathrm{~V}$)

V1		V2	
DC $(\operatorname{avg}(\mathrm{V} 1))$	AC (V1pp $)$	DC $(\operatorname{avg}(\mathrm{V} 2))$	AC (V2pp)

5) Max / Min Circuit

Determine the votlages and currents for the following max / min circuit. Assume ideal silicon diodes ($\mathrm{Vf}=0.7 \mathrm{~V}$)

I1	I2	I3	I4	I5	I6

6) Buck Converter

Determine the voltages at V1 and V2. Assume ideal silicon diodes ($\mathrm{Vf}=0.7 \mathrm{~V}$)

V1		V2	
DC $(\operatorname{avg}(\mathrm{V} 1))$	AC (V1pp $)$	$\mathrm{DC}(\operatorname{avg}(\mathrm{V} 2))$	$\mathrm{AC}(\mathrm{V} 2 \mathrm{pp})$

Green New Deal Bonus! Which of the following countries offer tuition-free college? (circle all that apply)

ECE 320 - Final - Name

Part 2: Transistors and Op-Amps. Fall 2019

1) Transistors and Load Lines

Determine the following for the following transsitor circuit

Beta	Load Line	Operating Point for		
		a) Vin $=0 \mathrm{~V}$	b) Vin $=5 \mathrm{~V}$	c) Vin $=10 \mathrm{~V}$
	show on graph	show on graph	show on graph	show on graph

2) Transistor Switch. Determine Rc and Rb so that you can turn on and off a white LED at 2A. Assume

- Vf=3.0V @4A for the LED
- The transistor has a gain of $500(\beta=500)$
- \quad Vbe $=0.7 \mathrm{~V}$, Vce(sat) $=0.2 \mathrm{~V}$
- Vin is capable of driving currents up to 10 mA

Min value of Rb	Max value of Rb	Rc

3) H-Bridge. Determine the voltages and currents for the following H-bridge. Assume all transistor have

- \mid Vbe $\mid=0.7 \mathrm{~V}$
- \mid Vce(sat) $\mid=0.2 \mathrm{~V}$
- $\beta=500$

I1	I2	I3	V1	V2

4) The data sheets for a Zetex 1051a NPN transistor are given below. From the data sheets, determine the following

$\max (\mathrm{Ic})$	beta	Vbe	Vce(sat)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.
Collector-Base Breakdown Voltage	$\mathrm{V}_{\text {(BR)CBO }}$	150	190		V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
Collector-Emitter Breakdown Voltage	$\mathrm{V}_{\mathrm{CES}}$	150	190		V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
Collector-Emitter Breakdown Voltage	$\mathrm{V}_{\mathrm{CEO}}$	40	60		V	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$
Collector-Emitter Breakdown Voltage	$\mathrm{V}_{\mathrm{CEV}}$	150	190		V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{EB}}=1 \mathrm{~V}$
Emitter-Base Breakdown Voltage	$\mathrm{V}_{\text {(BR)EBO }}$	5	8.8		V	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$
Collector Cut-Off Current						

5) Schmitt Trigger \& Transistor Switch. Design a Schmitt trigger so that

- The motor turns on (500mA @ 20V) when $\mathrm{R}>9 \mathrm{k}$
- The motor turns off $\mathrm{R}<8 \mathrm{k}$
- No change for $8 \mathrm{k}<\mathrm{R}<9 \mathrm{k}$

Assume

- The op-amp is capable of sourcing / sinking up to 20 mA
- The transistor has a gain of $1000, \mathrm{Vbe}=1.4 \mathrm{~V}, \mathrm{Vce}=0.9 \mathrm{~V}$ (i.e. a TIP112 transistor)

6) TTL Logic: Determine the voltages and currents for the following DTL gate. Assume 3904 transistors

- \quad Vbe $=0.7 \mathrm{~V}$
- Vce(sat) $=0.2 \mathrm{~V}$
- $\beta=100$

V1	V2	V3	I4	I5

