ECE 320 - Homework \#2

Semiconductors, PN Junction. Due Monday, September 9th

Semiconductors

1) Why does the resistance of silicon decrease as temperature goes up?

As temperature goes up, you get more thermal electron / hole pairs (i.e. conductors).
As the number of conductors increases, the resistance decreases.
2) What doping of Boron (p-type) do you need to make an 0805 resistor have a resistance of 7500 Ohms? The dimensions of an 0805 resistor are

$$
\begin{aligned}
& \mathrm{L}=2.0 \mathrm{~mm}, \mathrm{~W}=1.25 \mathrm{~mm}, \mathrm{H}=0.95 \mathrm{~mm} \\
& R=\left(\frac{\rho L}{A}\right) \\
& 7500 \Omega=\left(\frac{\rho \cdot 0.2 \mathrm{~cm}}{(0.125 \mathrm{~cm})(0.095 \mathrm{~cm})}\right) \\
& \rho=445.3125 \Omega \cdot \mathrm{~cm} \\
& \sigma=\frac{1}{\rho}=0.0022 \frac{1}{\Omega \cdot c \mathrm{~cm}}=q p \mu_{p} \\
& 0.0022=\left(1.6 \cdot 10^{-19} C\right)(p)(500) \\
& p=2.807 \cdot 10^{13} \frac{\text { atoms }}{\mathrm{cc}}
\end{aligned}
$$

3) A thermistor has the following resistance - voltage relationship

$$
R=1000 \exp \left(\frac{3905}{T}-\frac{3905}{298}\right) \Omega
$$

where T is the temperature in degrees Kelvin. What is the resistance you'll read at

- +41.1C (hottest day in Fargo - July 1988)
- -37.2C (coldest day in Fargo - January 1977)
- +6.2 C (average temperature in Fargo in 2018)

Kelvin $=$ Celsius +273

- 41.1C: 510.85 Ohms
- -37.2C: 31,709 Ohms
- +6.2C 2,416.6 Ohms

Note: One nice feature of thermistors is the high sensitivity: there is a large change in resistance when the temperature changes.

PN Junction

4) Why can current flow p to n but not n to p ?

Any of the following explanations are OK
Answer 1: p to n you are using majority carriers so the resistance is small. n to p you are using minority carriers, so the resistance is large.

Answer 2: Applying voltage p to n results in the depletion zone be reduced in size. If reduced to zero, current flows. Applying voltage n to p just makes the depletion zone bigger.

Answer 3: If you have enough voltage to overcome the potential energy barrier (0.7 V for silicon), current flows. If you don't, current doesn't (it doesn't have enough energy to overcome the potential energy barrier).
5) The voltage across a forward-biased diode is

$$
V_{d}=V_{T} \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)
$$

Plot the voltage vs. temperature from -40 C to +40 C for a diode with doping

$$
N_{A}=N_{D}=10^{18} \frac{\mathrm{atoms}}{c c}
$$

Assume $\mathrm{V}_{\mathrm{T}}=0.052 \mathrm{~V}$

From the lecture notes,

$$
\begin{aligned}
& n_{i}^{2}=A_{o} T^{3} e^{-E_{G}^{\prime} / k T} \\
& A_{0}=2.51 \cdot 10^{31} \\
& E_{G}=1.2-0.00036 T \\
& k=8.617343 \times 10^{-5} \frac{\mathrm{eV}}{\mathrm{~K}}
\end{aligned}
$$

In Matlab:

```
C = [-40:40]';
T = C + 273;
Ao = 2.36e33;
Eg = 1.2 - 0.00036*T;
k = 8.617343e-5;
ni = sqrt( Ao * (T.^3) .* exp(-Eg ./ (k*T) ) );
Vt = 0.026;
Vd = Vt * log( Na * Nd ./ (ni .^ 2) );
plot(C, Vd);
xlabel('Celsius');
ylabel('Volts');
```


Voltage across a diode with $\mathrm{Na}=\mathrm{Nd}=1 \mathrm{e} 18$ atoms $/ \mathrm{cc}$

