ECE 320 - Homework \#4

AC to DC Converters, Max/Min Circuits, Clipper Circuits. Due Monday, Feb 4th, 2019

AC to DC Converters

1) Determine the voltage at V 1 and V 2 (both DC and AC).

V1:

$$
\begin{aligned}
& \mathrm{Vp}=19.3 \mathrm{~V} \\
& I \approx \frac{19.3 \mathrm{~V}}{1000 \Omega+277 \Omega}=15.1 \mathrm{~mA} \\
& I=C \frac{d V}{d t} \\
& 15.1 \mathrm{~mA}=100 \mu F \cdot \frac{d V}{1 / 60 \mathrm{~s}} \\
& d V=2.5189 \mathrm{~V}
\end{aligned}
$$

DC Voltage: $\quad V_{1(D C)}=19.3-\frac{1}{2} d V=18.4 V$
AC Voltage: $\quad V_{1(A C)}=2.5189 V_{p p}$

V2: (DC)

$$
\begin{aligned}
& V_{2(D C)}=\left(\frac{1000}{1000+277}\right) 18.4 \mathrm{~V} \\
& V_{2(D C)}=14.4 \mathrm{~V}
\end{aligned}
$$

V2(AC)

$$
\begin{aligned}
& V_{2(A C)}=\left(\frac{(65.6-j 247.6)}{(65.6-j 247.6)+(277+j 3770)}\right) \cdot 2.51 V_{p p} \\
& V_{2(A C)}=0.182 V_{p p}
\end{aligned}
$$

2) Simulate this circuit using PartSim (or similar program) to verify your answers for problem 1

3) Lab: Build this circuit in lab and compare your measured values to calculated and simulated values.

	V1		V2	
	DC	AC	DC	AC
Calculated	18.4 V	2.51 Vpp	14.4 V	0.182 Vpp
Simulated	18.204 V	2.149 Vpp	14.261 V	0.110 Vpp
Measured (lab)				

4) Calculate the value of the two capacitors so that

- $\mathrm{V} 1=1 \mathrm{Vpp}$
- $\mathrm{V} 2=0.2 \mathrm{Vpp}$

V1:

$$
\begin{aligned}
& V_{1(D C)}=19.3 \mathrm{~V}-\frac{1}{2} \cdot 1 V_{p p}=18.8 \mathrm{~V} \\
& I=\frac{18.8 V}{1277 \Omega}=14.7 \mathrm{~mA} \\
& I=C \frac{d V}{d t}
\end{aligned}
$$

$$
14.7 m A=C \frac{1 V_{p p}}{1 / 60 s}
$$

$$
C_{1}=245 \mu F
$$

V2: Assuming $\mathrm{C} 2=0$

$$
\begin{aligned}
& V_{2 p p}=\left(\frac{1000}{1000+(277+j 370)}\right) 1 V_{p p} \\
& V_{2 p p}=0.251 V_{p p}
\end{aligned}
$$

To reduce to 0.2 Vpp , the resistor needs to be 20% smaller

$$
R=\left(\frac{0.2 V_{p p}}{0.251 V_{p p}}\right) 1000 \Omega=796 \Omega
$$

Pick C2 to be 796 Ohms

$$
\begin{aligned}
& \frac{1}{j \omega C_{2}}=-j 796 \Omega \\
& C_{2}=3.33 \mu F
\end{aligned}
$$

Max/Min:

5) Determine the voltages and currents for the following max/min circuit. What function does this circuit implement? $Y=f(A, B, C, D)$

Problem 5-6
6) Check your results in PartSim (or similar program)

Clipper Circuits:

7) Design a circuit to approximate the following function subject to the following requirements:

- Input: $0 . .10 \mathrm{~V}$, capable of 100 mA
- Output: 100k resistor
- Relationship: Graph below, +/-200mV

Prob lem 7-8
Op-Amp:

$$
\text { Gain }=2.4=1+\frac{R_{1}}{R_{2}}
$$

1st Zener

$$
\begin{aligned}
& \mathrm{Vz}=6.0 \mathrm{~V} \\
& \text { Slope }=1.6=2.4\left(\frac{R_{3}}{R_{3}+1 k}\right) \\
& R_{3}=2.0 \mathrm{k}
\end{aligned}
$$

2nd Zener

$$
\begin{aligned}
& \mathrm{Vz}=10.6 \mathrm{~V} \\
& \text { Slope }=0.378=2.4\left(\frac{R_{34}}{R_{34}+1 k}\right) \\
& R_{34}=187 \Omega=R_{3} \| R_{4} \\
& R_{4}=206 \Omega
\end{aligned}
$$

Gain $=2.4$

$$
\mathrm{R} 1=1 \mathrm{k}, \mathrm{R} 2=1.4
$$

8) Check your design in PartSim

9) Design a circuit which meets the following requirements:

- Input: -10 .. +10 V , capable of 100 mA
- Output: 1 k resistor
- Relationship:

$$
V_{o}=\left\{\begin{array}{cc}
+5 \mathrm{~V} & V_{\text {in }}>5 \mathrm{~V} \\
V_{\text {in }} & -5<V_{\text {in }}<5 \\
-5 \mathrm{~V} & V_{\text {in }}<-5 \mathrm{~V}
\end{array}\right.
$$

