ECE 320 - Homework \#5

H-Bridges, DC-to-DC Converters, Fourier Transform. Due Monday, October 7th

H-Bridges

1) Determine the voltages and currents for the following H-bridge. Assume TIP transistors

- \mid Vbe $\mid=1.4 \mathrm{~V}$
- $\beta=1000$
- $\mathrm{V}_{\text {ce(sat) }}=0.9 \mathrm{~V}$

$I_{1}=\left(\frac{10-1.4}{10 k}\right)=860 \mu A \quad I_{2(\max)}=\left(\frac{10-0.9-0.9}{50}\right)=164 m A \quad I_{3}=\left(\frac{10-1.4}{20 k}\right)=430 \mu A$
$\beta I_{1}=860 \mathrm{~mA}$
$\beta I_{3}=430 \mathrm{~mA}$
$I_{2}=\min (860 m A, 164 m A, 430 m A)$
$I_{2}=164 m A$
Both transistors are saturated

2) Design an H -Bridge cable of running a DC servo motor forward (+10 V), reverse (-10 V) and stop (0 V). Assume the DC servo motor draws 200 mA @ 10 V .

The above circuit works. No changes are needed.
3) Check your design for problem \#2 in PartSim (or similar program)

PartSim wasn't working, so I used CircuitLab.
CircuitLab actually has Darlington pairs (!), so I used these with 10k resistors for all base resistors. As expected, the transistors were saturated

	V4	V5
Calculated	9.1 V	0.9 V
Simulated	9.130 V	0.8159 V

4) Lab: Build your circuit in lab and verify it works for all three states (forward, reverse, stop).

- note: Check Vce. If it's 0.9 V , the transistor is saturated (on)

DC to DC (Buck) Converters

5) For the following DC to DC converter, determine the voltage at V1 and V2 (both DC and AC).

DC:

$$
\begin{aligned}
& V_{1}=0.7 \cdot(15 \mathrm{~V})+0.3 \cdot(-0.7 \mathrm{~V}) \\
& V_{1}=10.29 \mathrm{~V} \\
& V_{2}=\left(\frac{100}{100+10}\right) V_{1} \\
& V_{2}=9.35 \mathrm{~V}
\end{aligned}
$$

AC:

$$
\begin{aligned}
& V_{1}=15.7 V_{p p} \\
& V_{2}=\left(\frac{21.96-j 41.40}{(21.96-j 41.40)+(10+j 628.3)}\right) 15.7 V_{p p} \\
& V_{2}=1.25 V_{p p}
\end{aligned}
$$

6) Check your analysis in PartSim (or similar program)

A square wave generator and a diode model the input (15V) and switch
The DC level is off since I don't know how to change the duty cycle from 50%.

The resulting waveform is:

	\max	\min	average (DC)	difference (AC)
V1	14.91 V	-0.7998 V	7.055 V	15.70 Vpp
V2 (simulated)	7.187 V	5.614 V	6.400 V	1.573 Vpp
V 2 (calculated)	$*$	$*$	9.35 V	1.25 Vpp

7) Design a Buck converter to convert +15 VDC to +5 VDC , capable of driving 100 mA

Use the above circuit.
If the DC value of V 2 is 5.00 V , then V 1 is

$$
\begin{aligned}
& V_{2}=5.00 \mathrm{~V}=\left(\frac{100}{100+10}\right) V_{1} \\
& V_{1}=5.50 \mathrm{~V}
\end{aligned}
$$

The duty cycle is then

$$
\text { Duty Cycle }=\left(\frac{5.50+0.7}{15+0.7}\right)=39.49 \%
$$

The load changes to

$$
R_{\text {load }}=\left(\frac{5 \mathrm{~V}}{100 \mathrm{~mA}}\right)=50 \Omega
$$

(not asked for): If the ripple at the load is 100 mVpp , then

$$
\left(\frac{Z_{\text {load }}}{Z_{\text {load }}+(10+j 628.3)}\right) \cdot 15.7 V_{p p}=0.1 V_{p p}
$$

Assuming Zload $\ll 628$ Ohms (take the magnitude of the answers - we want real numbers)

$$
\begin{aligned}
& \left(\frac{Z_{\text {load }}}{10+j 628.3}\right) \cdot 15.7 V_{p p}=0.1 V_{p p} \\
& Z_{\text {load }}=4.00 \Omega \\
& \frac{1}{j \omega C} \approx 4 \Omega \\
& C=39.7 \mu F
\end{aligned}
$$

Fourier Transform

8) Find the first 5-terms of the Fourier Series for V1 in problem \#5

$$
V_{1}=\left\{\begin{array}{cc}
+15 \mathrm{~V} & 70 \% \text { of the time } \\
-0.7 \mathrm{~V} & 30 \% \text { of the time }
\end{array}\right.
$$

Time is arbitrary for Fourier transforms. Let the period be 1 second

```
t = [0:0.001:1]';
v1 = 15*(t < 0.7) - 0.7*(t > 0.7);
plot(t,V1);
```


Change the period to 2 pi. Compute the Fourier terms

```
DC = mean(V1)
    10.279021
C1 = 2*mean(V1 .* exp(-j*2*pi*t))
    - 4.7289757 - 6.5501268i
C2 = 2*mean(V1 .* exp(-j*4*pi*t))
    1.4942062 - 4.5064556i
C3 = 2*mean(V1 .* exp(-j*6*pi*t))
    0.9797352 - 0.3085974i
C4 = 2*mean(V1 .* exp(-j*8*pi*t))
    - 1.1775295 - 0.8772997i
C5 = 2*mean(V1 .* exp(-j*10*pi*t))
    0.0299700 - 1.9968248i
```

Check: build up V1 from its Fourier terms and it ought to match....

```
\(\mathrm{Vf}=0 * t+D C ;\)
\(\mathrm{Vf}=\mathrm{Vf}+\mathrm{real}(\mathrm{C} 1) * \cos (2 * \mathrm{pi*t})\) - imag(C1)*sin(2*pi*t);
\(\mathrm{Vf}=\mathrm{Vf}+\mathrm{real}(\mathrm{C} 2) * \cos (4 * \mathrm{pi*t})\) - imag(C2)*sin(4*pi*t);
\(\mathrm{Vf}=\mathrm{Vf}+\mathrm{real}(\mathrm{C} 3) * \cos (3 * 2 * \mathrm{pi*t})\) - imag(C3)*sin(3*2*pi*t);
\(\mathrm{Vf}=\mathrm{Vf}+\mathrm{real}(\mathrm{C} 4) * \cos (4 * 2 * \mathrm{pi*t})-\mathrm{imag}(\mathrm{C} 4) * \sin (4 * 2 * \mathrm{pi*t}) ;\)
\(\mathrm{Vf}=\mathrm{Vf}+\mathrm{real}(\mathrm{C} 5) * \cos (5 * 2 * \mathrm{pi*t})-\mathrm{imag}(\mathrm{C} 5) * \sin (5 * 2 * \mathrm{pi} \mathrm{t})\);
plot(t,V1,'b',t,Vf,'r');
```


As you add more and more terms, it gets closer and closer.
9) Determine V2 for problem \#5 for the Fourier series approximation of V1 from problem \#8

Fourier Term	w	V 1	V 2 Volts	V 2 Watts
DC	0	10.279021	9.34	87.32 W
1	$6283 \mathrm{rad} / \mathrm{sec}$	$-4.728-6.550 \mathrm{i}$	$0.0535+0.6419 \mathrm{i}$	0.212 W
2	$12,566 \mathrm{rad} / \mathrm{sec}$	$1.494-4.506 \mathrm{i}$	$-0.055+0.0819 \mathrm{i}$	0.00488 W
3	$18,849 \mathrm{rad} / \mathrm{sec}$	$0.979-0.308 \mathrm{i}$	$-0.0095+0.0011 \mathrm{i}$	0.000045 W
4	$25,132 \mathrm{rad} / \mathrm{sec}$	$-1.177-0.877 \mathrm{i}$	$0.0055+0.0054 \mathrm{i}$	0.000029 W
5	$31,415 \mathrm{rad} / \mathrm{sec}$	$0.029-1.996 \mathrm{i}$	$-0.0008+0.0066 \mathrm{i}$	0.000022 W

Note that 99.9% of the energy is in the DC term and 1st harmonic for V2. Ignoring all other terms isn't 100% correct, but it's really close.

Matlab Code:

```
n = 0;
w = n*1000*2*pi;
ZL = inv(j*w*C + 1/100);
DO = ZL / (ZL + 10 + j*W*L) * DC
n = 1;
w = n*1000*2*pi;
ZL = inv(j*W*C + 1/100);
D1 = ZL / (ZL + 10 + j*W*L) * C1
n = 2;
w = n*1000*2*pi;
ZL = inv(j*W*C + 1/100);
D2 = ZL / (ZL + 10 + j*W*L) * C2
n = 3;
w = n*1000*2*pi;
ZL = inv(j*W*C + 1/100);
D3 = ZL / (ZL + 10 + j*W*L) * C3
n = 4;
w = n*1000*2*pi;
ZL = inv(j*W*C + 1/100);
D4 = ZL / (ZL + 10 + j*W*L) * C4
n = 5;
w = n*1000*2*pi;
ZL = inv(j*W*C + 1/100);
D5 = ZL / (ZL + 10 + j*W*L) * C5
V2 = 0*t + D0;
V2 = V2 + real(D1)*cos(1*2*pi*t) - imag(D1)*sin(1*2*pi*t);
V2 = V2 + real(D2)*cos(2*2*pi*t) - imag(D2)*sin(2*2*pi*t);
V2 = V2 + real(D3)* cos(3*2*pi*t) - imag(D3)*sin(3*2*pi*t);
V2 = V2 + real(D4)*cos(4*2*pi*t) - imag(D4)*sin(4*2*pi*t);
V2 = V2 + real(D5)*cos(5*2*pi*t) - imag(D5)*sin(5*2*pi*t);
plot(t,V2)
```


