ECE 320 - Homework \#9

MOSFETs, MOSFET Switches, CMOS logic. Due Monday, October 28th

MOSFETs

1) The VI characteristics for an n-channel MOSFET is shown below. Assume Vt $=1.0 \mathrm{~V}$

- Label the off / saturated / ohmic regions.
- Determine the transconductance gain, kn

$2.5 A=\frac{k_{n}}{2}(6-1)^{2}$
$k_{n}=0.2 \frac{A}{V^{2}}$

2) Draw the load line for the following circuit. Determine the Q-point (Vds, Ids) when $\mathrm{Vin}=\mathrm{Vg}=0 \mathrm{~V}$

Off region

$$
\begin{aligned}
& \mathrm{Ids}=0 \mathrm{~V} \\
& \mathrm{Vde}=20 \mathrm{~V}
\end{aligned}
$$

$\mathrm{Vin}=\mathrm{Vg}=5 \mathrm{~V}$
Saturated Region

$$
\begin{aligned}
& I_{d s}=\frac{k_{n}}{2}\left(V_{g s}-V_{t h}\right)^{2} \\
& I_{d s}=\left(\frac{0.2}{2}\right)(5-1)^{2} \\
& I_{d s}=1.6 \mathrm{~A} \\
& V_{d s}=20-10 I_{d s}=4.0 \mathrm{~V}
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \text { Ids }=1.8888 \mathrm{~A} \\
& \text { Vds }=1.118 \mathrm{~V}
\end{aligned}
$$

$$
\operatorname{Vin}=\mathrm{Vg}=10 \mathrm{~V}
$$

Ohmic Region

$$
\begin{array}{ll}
I_{d s}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} & \text { 1st equation } \\
10 I_{d s}+V_{d s}=20 & \text { 2nd equation - load line }
\end{array}
$$

Onnic Region

MOSFET Switch

The characteristics for a MOSFET are

- Part: AOTF296L
- Current - Continuous Drain (Id) @ $25^{\circ} \mathrm{C} 10 \mathrm{~A}$ (Ta), 41 A (Tc)
- Rds On (Max) @ Id, Vgs 10mOhm @ 20A, 10V
- Vgs(th) (Max) @ Id 3.4V @ 250 $\mu \mathrm{A}$

3) Determine the transconductance gain, kn

In the Ohmic region

$$
\begin{aligned}
& V_{d s}=0.01 \Omega \cdot 20 A=0.2 V \\
& I_{d s}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} \\
& 20 A=k_{n}\left(10 \mathrm{~V}-3.4 \mathrm{~V}-\frac{0.2 \mathrm{~V}}{2}\right) 0.2 \mathrm{~V} \\
& k_{n}=15.38 \frac{\mathrm{~A}}{V^{2}}
\end{aligned}
$$

4) Determine the voltages for the following circuit for

Vin $=\mathrm{Vg}=0 \mathrm{~V}$
Off region

$$
\begin{aligned}
& \text { Ids }=0 \\
& \text { Vds }=20 \mathrm{~V}
\end{aligned}
$$

$\mathrm{Vin}=\mathrm{Vg}=5 \mathrm{~V}$
assume ohmic region

$$
\begin{aligned}
& I_{d s}=\frac{k_{n}}{2}\left(V_{g s}-V_{t h}\right)^{2} \\
& I_{d s}=\frac{15.38}{2}(5-3.4)^{2} \\
& I_{d s}=19.68 \mathrm{~A}
\end{aligned}
$$

not possible. So, assume ohmic region

$$
\begin{aligned}
& I_{d s}=k_{n}\left(V_{g s}-V_{t h}-\frac{V_{d s}}{2}\right) V_{d s} \\
& I_{d s}=15.38\left(5-3.4-\frac{V_{d s}}{2}\right) V_{d s} \\
& 10 I_{d s}+V_{d s}=20
\end{aligned}
$$

solving

$$
\begin{aligned}
& \text { Ids }=1.992 \mathrm{~V} \\
& \text { Vds }=0.083 \mathrm{~V} \\
& \text { Rds }=\text { Vds } / \text { Ids }=0.042 \mathrm{Ohms}
\end{aligned}
$$

Vin $=\mathrm{Vg}=10 \mathrm{~V}$
assume Ohmic region

$$
\begin{aligned}
& I_{d s}=15.38\left(10-3.4-\frac{V_{d s}}{2}\right) V_{d s} \\
& 10 I_{d s}+V_{d s}=20
\end{aligned}
$$

Solving

$$
\begin{aligned}
& \text { Ids }=1.998 \mathrm{~A} \\
& \text { Vds }=0.020 \mathrm{~V} \\
& \text { Rds }=\text { Vds } / \text { Ids }=0.010 \mathrm{Ohms}
\end{aligned}
$$

5) Design a circuit using this MOSFET to turn on and off a DC servo motor. Assume the DC motor draws $200 \mathrm{~mA} @ 10 \mathrm{~V}$.

Use the previous MOSFET.

- Apply Vin = 0V to turn off
- Apply Vin $=10 \mathrm{~V}$ (or 5 V) to turn on

MOSFET switches are really easy to use

CMOS Logic

6) Design a CMOS gate to implement the function

$$
\mathrm{Y}=\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{BC}
$$

Use DeMorgan's Theorem

$$
\begin{aligned}
& Y=A B+\bar{A} B C \\
& \bar{Y}=(\bar{A}+\bar{B})(A+\bar{B}+\bar{C})
\end{aligned}
$$

On the low side, implement Y^{\prime}
On the high side, imlpement Y

