ECE 320-Quiz \#3 - Name

LEDs, AC to DC Converters - Fall 2020

1) Determine the voltages and currents for the following circuit. Assume ideal red LEDs $(\mathrm{Vf}=1.9 \mathrm{~V})$.

V 1	V 2	V 3	Id 1	Id 2	Id 3
5.14 V	3.8 V	1.9 V	0 mA	6.7 mA	22.9 mA

Guess all three diodes are on resulting in $\mathrm{V} 1=5.7 \mathrm{~V}$. Id1 is then

$$
\begin{aligned}
& \left(\frac{10-5.7}{100}\right)=I_{d 1}+\left(\frac{1.9 \mathrm{~V}}{200}\right)+\left(\frac{3.8 \mathrm{~V}}{200}\right)+\left(\frac{5.7 \mathrm{~V}}{200}\right) \\
& I_{d 1}=-14 m A
\end{aligned}
$$

Guess diode 1 is off $(\mathrm{Id} 1=0)$

$$
\begin{aligned}
& \left(\frac{V_{1}-10}{100}\right)+0+\left(\frac{V_{1}-3.8 V}{200}\right)+\left(\frac{V_{1}-1.9}{200}\right)+\left(\frac{V_{1}}{200}\right)=0 \\
& V_{1}=5.14 V \\
& I_{d 2}=\left(\frac{V_{1}-V_{2}}{200}\right)=6.7 m A \\
& I_{d 3}=I_{d 2}+\left(\frac{V_{1}-V_{3}}{200}\right)=22.9 m A
\end{aligned}
$$

2) Determine the voltages and currents for the following circuit. Assume ideal red LEDs $(\mathrm{Vf}=1.9 \mathrm{~V})$.

V 1	V 2	V 3	Id 1	Id 2	Id 3
5.14 V	3.8 V	1.9 V	0 mA	6.7 mA	22.9 mA

Diode \#1 is off so it is the same solution as problem \#1
3) Determine the resistances so that the following RGB LED outputs Kelly green:

- $\operatorname{Red}=1647 \mathrm{mcd}$
- Green $=6157 \mathrm{mcd}$
- Blue $=2160 \mathrm{mcd}$

The specifications for the RGB LED are:

color	Vf	$\mathrm{mcd} @ 20 \mathrm{~mA}$
red	2.0 V	10,000
green	3.0 V	10,000
blue	3.2 V	10,000

${ }^{\frac{\mathrm{Rr}}{\mathrm{Rr}}}{ }^{\mathrm{Rg}}{ }^{\mathrm{Rg}} \mathrm{Rb}$		
2428 Ohms	568 Ohms	1547 Ohms

$$
\begin{aligned}
& I_{r}=\left(\frac{1647 m c d}{10,000 m c d}\right) 20 m A=3.294 m A \\
& R_{r}=\left(\frac{10 \mathrm{~V}-2.0 \mathrm{~V}}{3.294 m A}\right)=2428 \Omega \\
& I_{g}=\left(\frac{6157 m c d}{10,000 m c d}\right) 20 m A=12.31 m A \\
& R_{g}=\left(\frac{10 \mathrm{~V}-3.0 \mathrm{~V}}{12.31 \mathrm{~mA}}\right)=568 \Omega \\
& I_{b}=\left(\frac{2160 m c d}{10,000 m c d}\right) 20 m A=4.32 m A \\
& R_{b}=\left(\frac{10 \mathrm{~V}-3.2 \mathrm{~V}}{4.32 m A}\right)=1574 \Omega
\end{aligned}
$$

4) The following waveforms are found using CircuitLab for V1 and V2 for an AC to DC converter. Determine the following

Frequency (Hz)	V 1 (top waveform)		V 2 (lower waveform)	
	DC (average)	AC (Vpp)	DC (average)	AC (Vpp)
$\mathbf{6 0 ~ H z}$	$\mathbf{1 8 . 0 V}$	$\mathbf{2 . 4 0 V p p}$	$\mathbf{1 6 . 3 5 V}$	$\mathbf{0 . 5 0 V p p}$

5) Determine the voltages V1 and V2 (both DC and AC)

V 1		V 2	
$\mathrm{DC}($ mean(V1))	AC (V1pp)	DC (mean(V2))	AC (V2pp)
$\mathbf{1 8 . 0 1 V}$	$\mathbf{2 . 5 7 3} \mathrm{Vpp}$	$\mathbf{1 4 . 4 1 V}$	$\mathbf{0 . 2 3 2 V p p}$

$$
\begin{aligned}
& \max (\mathrm{V} 1)=19.3 \mathrm{~V} \\
& I \approx\left(\frac{19.3 V}{20+5}\right)=772 m A \\
& I=C \frac{d V}{d t} \\
& 772 m A=5000 \mu F \frac{d V}{1 / 60} \\
& V_{1}(A C)=d V=2.573 V_{p p} \\
& V_{1}(D C)=19.3 V-\frac{2.573 V_{p p}}{2}=18.01 V \\
& V_{2}(D C)=\left(\frac{20}{20+5}\right) 18.01 V=14.41 V \\
& V_{2}(A C)=\left(\frac{(1.981-j 5.974)}{(1.981-j 5.974)+(5+j 75.4)}\right)\left(2.573 V_{p p}\right) \\
& V_{2}(A C)=0.232 V_{p p}
\end{aligned}
$$

6) Determine $\mathrm{R}, \mathrm{C} 1$, and C 2 so that

- The DC current through R is 100 mA
- The ripple at V 1 is 4 Vpp and
- The ripple at $\mathrm{V} 2=500 \mathrm{mV} \mathrm{pp}$

C 1	C 2	R
416.7 uF	35.88 uF	163 Ohms

$$
\begin{aligned}
& V_{1}(D C)=19.3 V-\frac{4 V_{p p}}{2}=17.3 \mathrm{~V} \\
& R_{\text {total }}=\frac{17.3 \mathrm{~V}}{100 \mathrm{~mA}}=173 \Omega \\
& R=163 \Omega \\
& I=C \frac{d V}{d t}
\end{aligned}
$$

$$
100 m A=C_{1} \frac{4 V}{1 / 60 s}
$$

$$
C_{1}=416.7 \mu F
$$

If $\mathrm{C} 2=0$

$$
\begin{aligned}
& V_{2}(A C)=\left(\frac{163}{163+(10+j 565.5)}\right) 4 V_{p p} \\
& V_{2}(A C)=1.103 V_{p p}
\end{aligned}
$$

To reduce the ripple to 500 mVpp , the impedance of C 2 should be

$$
\begin{aligned}
& \left|\frac{1}{j \omega C_{2}}\right|=\left(\frac{500 m V_{p p}}{1.103 V_{p p}}\right) 163 \Omega=73.9 \Omega \\
& C_{2}=35.88 \mu F
\end{aligned}
$$

Bonus: What is the next figure in the sequence:

Look at the right half

It's the numbers $1,2,3,4,5$
The next figure is then the number 6 and it's mirror image

