ECE 320-Quiz \#4 - Name

Max/Min, Clipper, Transistors - September 24, 2020

1) Max/Min: Determine the voltages and currnets for the following min/max circuit

Id 1	Id 2	Id 3	Id 4	$\mathrm{Id5}$	Id 6
$\mathbf{0}$	$\mathbf{1 5 . 3} \mathbf{m A}$	$\mathbf{0}$	$\mathbf{1 . 2 m A}$	$\mathbf{6 . 1 m A}$	$\mathbf{0}$

2) Clipper: Determine R and $V z$ to approximate the following function

$$
y=20 \sin \left(\frac{x}{7}\right) \quad 0<x<10
$$

R0	V_{21}	R 1	$\mathrm{~V}_{2} 2$	R 2
1.67 k	8.0 V	5846	16.0 V	854

answers vary depending upon how you draw your lines

Answers will vary depending upon how you draw the orange lines. As drawn

- $\mathrm{Vz} 1=8.0 \mathrm{~V}$
- $\mathrm{Vz} 2=16.0 \mathrm{~V}$
- $1+\frac{R_{0}}{1 k}=2.67 \quad \Rightarrow \quad R_{0}=1.67 k$
- $\left(\frac{R_{1}}{R_{1}+1 k}\right)=\frac{2.28}{2.67} \quad \Rightarrow \quad R_{1}=5846$
- $\left(\frac{R_{12}}{\mathbf{R}_{12}+1 k}\right)=\left(\frac{1.14}{2.67}\right) \Rightarrow R_{12}=R_{1} \| R_{2}=745 \Omega$

3) Clipper: Design a circuit to clip the voltage at +8 V and -3 V

$$
y=\left\{\begin{array}{cc}
+8 V & x>8 \\
x & -3<x<8 \\
-3 V & x<-3
\end{array}\right.
$$

4) The VI characteristics for an NPN transistor are shown below

- Draw the load line for the following circuit
- Show on the load line the operating point (Vce, Ic) when Vin $=\{0 \mathrm{~V}, 2.5 \mathrm{~V}, 5 \mathrm{~V}\}$

Assume

- \quad Vbe $=0.7 \mathrm{~V}$
- $\mathrm{Vce}=0.2 \mathrm{~V}$ when saturated

Load Line	Vin $=0 \mathrm{~V}$	Vin $=2.5 \mathrm{~V}$	Vin =5V
show on graph	show (Vce, Ic) on graph	show (Vce, Ic) on graph	show (Vce, Ic) on graph

Vin $=2.5 \mathrm{~V}$

$$
I_{b}=\left(\frac{2.5 V-0.7 V}{3000}\right)=600 \mu A
$$

$\mathrm{Vin}=5.0 \mathrm{~V}$

$$
I_{b}=\left(\frac{5 V-0.7 V}{3000}\right)=1.433 m A
$$

5) The voltages for the following circuit are measured (shown below). From these measurements, determine the following:

$\mathrm{Ib}(\mathrm{mA})$	Ic (mA)	Current Gain (beta)	Operating Region off $/$ active $/$ saturated
2.150 mA	61.08 mA	28.41	Active $\mathrm{Vce}>0.2 \mathrm{~V}$

6) Assume an ideal 3904 transistor

- $\operatorname{Vce}(s a t)=0.2 \mathrm{~V}$
- $\quad \mathrm{Vbe}=0.7 \mathrm{~V}$
- $\beta=100$

Determine the voltages $\{\mathrm{Vb}, \mathrm{Vc}\}$ and the currents $\{\mathrm{Ib}, \mathrm{Ic}\}$

Vb	Vc	Ib	Ic
$\mathbf{0 . 7 0 V}$	2.2372 V	768.6 A	77.63 mA
diode Vbe	active mode		

$$
\begin{aligned}
& I_{c}=I_{b}+100 I_{b} \\
& \left(\frac{V_{c}-0.7}{2000}\right)=I_{b} \\
& \left(\frac{10-V_{c}}{100}\right)=I_{c}=101 I_{b} \\
& \left(\frac{10-V_{c}}{100}\right)=101\left(\frac{V_{c}-0.7}{2000}\right) \\
& V_{c}=2.2372 \mathrm{~V} \\
& I_{c}=77.63 \mathrm{~mA} \\
& I_{b}=768.6 \mu \mathrm{~A}
\end{aligned}
$$

Bonus! A diode is a pn juncion. A transistor is an npn junction. Why can't you make a transistor by putting two 2N1004 diodes back-to-back?
ans: The base has to be very thin so that the electrons that flow emitter to base pass right through the base and wind up at the collector. If you use two diodes, the base is too thick.

- $\mathrm{np}+\mathrm{pn}=\mathrm{npn}$

