ECE 320-Quiz \#5 - Name

555 Timers, Transistor Switch, Comparitors, Schmitt Triggers - October 1, 2020

1) 555 Timers. For the following circuit, the on and off time is equal to

$$
\begin{aligned}
& T_{\text {on }} \approx 0.6931 R_{1} C=300 \mu s \\
& T_{\text {off }} \approx 0.6931 R_{2} C=700 \mu \mathrm{~s}
\end{aligned}
$$

Determine R1, R2, and C so that the 555 timer outputs

- A 1 kHz square wave $($ Ton + Toff $=1 \mathrm{~ms})$
- With 30% duty cycle $($ Ton $=300 \mathrm{us}$, Toff $=700 \mathrm{us})$

R1	R2	C
4320	10,099	0.1 uF
depends upon C	depends upon C	

2) Transistor Switch: Design. Specify R1 and R2 so that when Vin $=5.00 \mathrm{~V}$,

- Ic $=75 \mathrm{~mA}$,
- The transistor is saturated, and
- Ib $<25 \mathrm{~mA}$ (the maximum output of a 555 timer)

Assume 3904 transistors

- \quad Vbe $\mid=0.7 \mathrm{~V}$
- \mid Vce $I=0.2 \mathrm{~V}$ when saturated
- $\beta=100$

min value of Rb	max value of Rb	Rc
172 Ohms	5733 Ohms	64 Ohms

$R_{c}=\left(\frac{5 V-0.2 V}{75 m A}\right)=64 \Omega$
$\min \left(I_{b}\right)=\frac{I_{c}}{\beta}=\frac{75 m A}{100}=750 \mu \mathrm{~A}$
$R_{b}=\left(\frac{5-0.7}{750 \mu A}\right)=5733 \Omega$
$\max \left(I_{b}\right)=25 m A$
$R_{b}=\left(\frac{5-0.7}{25 m A}\right)=172 \Omega$
3) Darlington Pair (analysis). Assume two 3904 NPN transistors are connected as a Darlington pair.

- $\quad \mid$ Vbe $I=0.7 \mathrm{~V}$
- \mid Vce $\mathrm{I}=0.2 \mathrm{~V}$ when saturated
- $\beta=100$

V 1	V 2	V 3	II	L	${ }^{13}$
1.4 V	0.7 V	0.9 V	36 uA	901 uA	90.1 mA

$$
\begin{aligned}
& V_{2}=0.7 \mathrm{~V} \\
& V_{1}=1.4 \mathrm{~V}
\end{aligned}
$$

Assume T1 is saturated, T 2 is on

$$
\begin{aligned}
& V_{3}=V_{2}+0.2 \mathrm{~V}=0.9 \mathrm{~V} \\
& I_{1}=\left(\frac{5 V-1.4 \mathrm{~V}}{100 \mathrm{k}}\right)=36 \mu \mathrm{~A} \\
& I_{4}=\left(\frac{10-0.9}{100}\right)=91 \mathrm{~mA} \\
& I_{1}+I_{4}=I_{2}+I_{3}=I_{2}+100 I_{2}=101 I_{2} \\
& I_{2}=901.3 \mu A \\
& I_{3}=90.13 \mathrm{~mA}
\end{aligned}
$$

4) Comparitor: Design a circuit which output

- 0 V when $\mathrm{R}<1500$ Ohms
- 10 V when $\mathrm{R}>1500$ Ohms

Assume a 1500 Ohm resistor

$$
V_{x}=\left(\frac{1500}{1500+1500}\right) 10 \mathrm{~V}=5.00 \mathrm{~V}
$$

5) Schmitt Trigger: Design a circuit which output

- $\mathrm{Y}=5 \mathrm{~V}$ when $\mathrm{R}>1500$ Ohms
- $\mathrm{Y}=0 \mathrm{~V}$ when $\mathrm{R}<1200$ Ohms
- No change for $1200<\mathrm{R}<1500$ Ohms

Assume a 1500 Ohm resistor
When $\mathrm{R}=1500(2 \mathrm{Y}=10 \mathrm{~V})$

$$
\mathrm{Vx}=5.00 \mathrm{~V}
$$

When $\mathrm{R}=1200(2 \mathrm{Y}=0 \mathrm{~V})$

$$
\begin{aligned}
& \mathrm{Vx}=4.444 \mathrm{~V} \\
& \text { gain }=\left(\frac{10 V-0 V}{5 V-4.444 V}\right)=18
\end{aligned}
$$

6) Schmitt Trigger: Analysis. Determine the voltages and resistance where the following Schmitt trigger turns on and off

On $(\mathrm{V} 2=+10 \mathrm{~V})$		Off $(\mathrm{V} 2=0 \mathrm{~V})$	
V 1	R	V 1	R
$\mathbf{6 . 0 0 V}$	$\mathbf{6 0 0 0}$ Ohms	$\mathbf{6 . 4 V}$	$\mathbf{7 1 1 1}$ Ohms

Bonus! Where is the error in the geometric proof that $64=65$.

- Take an $8 x 8$ square and cut it as shown on the left
- Rearrange it into the rectangle as shown on the right
- The area is now $65(64=65)$

There is a gap in the middle of the rectangles to the right. The gap has an area of 1.000

