ECE 320-Quiz \#6 - Name

H Bridges, DC to DC Converters, Fourier Transforms - October 8, 2020

H-Bridge Analysis:

1) Determine the voltages and currents for the following H-bridge. Assume ideal 3904 \& 3906 transistors:

- \mid Vbe $\mid=0.7 \mathrm{~V}$
- \mid Vce $\mid=0.2 \mathrm{~V}$ when saturated
- Current gain $=\beta=100$

I1	I2	I3	V4	V5

H-Bridge Analysis:

2) Determine the voltages and currents for the following H-bridge. Assume ideal $3904 \& 3906$ transistors:

- \quad Vbe $1=0.7 \mathrm{~V}$
- $\quad \mid$ Vce $\mid=0.2 \mathrm{~V}$ when saturated
- Current gain $=$ beta $=100$

I1	I2	I 3	V 4	V 5

DC to DC Converter: Analysis

3) Determine the voltages at V1 and V2 (both DC and AC)

V1		V2	
V1(DC)	V1(AC)	V2(DC)	V2(AC)

DC to DC Converter: Design

4) Determine the duty cycle, R, and C2 so that

- $\mathrm{V} 2(\mathrm{DC})$ is 7.50 V
- $\mathrm{V} 2(\mathrm{AC})=250 \mathrm{mV} p$, and
- $\mathrm{I} 2=100 \mathrm{~mA}$

$\mathrm{X} \%$ (duty cycle)	C	R

Fourier Transform

5) Determine the period (T) of the following waveform

$$
x(t)=x(t+T)
$$

and it's Fourier transform

$$
x(t)=5+6 \sin (3 t)+7 \cos (4 t)
$$

Fourier Transform

6) Determine $y(t)$ given that

$$
x(t)=10+11 \sin (3 t)+12 \cos (6 t)
$$

Bonus! What is the impedance Rab for the following circuit as the number of stages goes to infinity?

