# ECE 320 - Homework \#3 

LEDs, AC to DC Converters. Due Monday, September 14th
Please make the subject "ECE 320 HW \#3" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

## LEDs

The specifications for a Piranah RGB LED are

| Color | Vf @ 20mA | mcd @ 20mA |
| :---: | :---: | :---: |
| red | 2.0 V | 10,000 |
| green | 3.2 V | 10,000 |
| blue | 3.2 V | 10,000 |

1) Design a circuit to drive these LEDs with a 5 V source to produce lavender:

- Red $=9020 \mathrm{mcd}(230 / 255)$
- Green $=6353 \mathrm{mcd}(162 / 255)$
- Blue $=8706 \mathrm{mcd}(222 / 255)$

$$
\begin{aligned}
& I_{r}=\left(\frac{9,020 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=18.040 \mathrm{~mA} \\
& R_{r}=\left(\frac{5 \mathrm{~V}-2.0 \mathrm{~V}}{18.040 \mathrm{~mA}}\right)=166 \Omega \\
& I_{g}=\left(\frac{6,353 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=12.706 \mathrm{~mA} \\
& R_{g}=\left(\frac{5 V-3.2 \mathrm{~V}}{12.706 \mathrm{~mA}}\right)=141 \Omega \\
& I_{b}=\left(\frac{8706 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=17.412 \mathrm{~mA} \\
& R_{b}=\left(\frac{10 \mathrm{~V}-3.2 \mathrm{~V}}{17.412 \mathrm{~mA}}\right)=103 \Omega
\end{aligned}
$$


2) Design a circuit to drive these LEDs with a 5 V source producing teal blue:

- $\quad$ Red $=1412 \operatorname{mcd}(36 / 255)$
- Green $=5176 \mathrm{mcd}(132 / 255)$
- Blue $=5373$ mcd $(137 / 255)$

$$
\begin{aligned}
& I_{r}=\left(\frac{1412 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=2.824 \mathrm{~mA} \\
& R_{r}=\left(\frac{5 \mathrm{~V}-2.0 \mathrm{~V}}{2.824 \mathrm{~mA}}\right)=1062 \Omega \\
& I_{g}=\left(\frac{5176 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=10.352 \mathrm{~mA} \\
& R_{g}=\left(\frac{5 \mathrm{~V}-3.2 \mathrm{~V}}{10.352 \mathrm{~mA}}\right)=174 \Omega \\
& I_{b}=\left(\frac{5373 \mathrm{mcd}}{10,000 \mathrm{mcd}}\right) 20 \mathrm{~mA}=10.746 \mathrm{~mA} \\
& R_{b}=\left(\frac{10 \mathrm{~V}-3.2 \mathrm{~V}}{10.746 \mathrm{~mA}}\right)=167 \Omega
\end{aligned}
$$



Other colors can be obtained from
https://www.rapidtables.com/web/color/color-wheel.html

## AC to DC Converters

3) Determine the votlages at V1 and V2 (DC and AC)


V1: Peak voltage $=19.3 \mathrm{~V}$

$$
\begin{aligned}
& I \approx\left(\frac{19.3 V}{1277 \Omega}\right)=15.11 \mathrm{~mA} \\
& I=C \frac{d V}{d t} \\
& 15.11 \mathrm{~mA}=50 \mu F \frac{d V_{1}}{1 / 60 s}
\end{aligned}
$$

$$
d V_{1}=5.038 V_{p p} \quad \text { this is the } A C \text { signal for } V 1
$$

$$
V_{1}(D C) \approx \max \left(V_{1}\right)-\frac{1}{2} V_{1 p p}
$$

$$
V_{1}(D C) \approx 19.3 V-\frac{1}{2} 5.038 V_{p p}=16.78 \mathrm{~V} \quad \text { the } D C \text { signal for } V 1
$$

V2: DC

$$
\begin{aligned}
& V_{2}(D C)=\left(\frac{1000}{1000+277}\right) 16.78 V \\
& V_{2}(D C)=13.14 V
\end{aligned}
$$

V2: AC

$$
\begin{array}{ll}
V_{2}(A C)=\left(\frac{(219.49-j 413.90)}{(219.49-j 413.90)+(277+j 3770)}\right) 5.038 V_{p p} \\
V_{2}(A C)=0.696 V_{p p} & \text { take the magnitude } \\
& \text { phase is the delay (don't care about that) }
\end{array}
$$

4) Build the circuit in CircuitLab (or similar program) and verify your calculations for problem \#3



|  | V1 |  | V2 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | DC | AC | DC | AC |
| Calculated | 16.78 V | 5.038 Vpp | 13.14 V | 696 mVpp |
| Simulated | 17.27 V | 3.97 Vpp | 13.53 V | 420 mVpp |

5) Determine C 1 and C 2 so that AC voltages are: $\mathrm{V} 1=2 \mathrm{Vpp}$ and $\mathrm{V} 2=300 \mathrm{mV}$ pp.

$$
\begin{aligned}
& V_{1}(D C)=19.3 V-\frac{1}{2} 2 V_{p p}=18.3 V \\
& I=\left(\frac{18.3 V}{1277 \Omega}\right)=14.33 m A \\
& I=C \frac{d V}{d t}
\end{aligned}
$$

$$
14.33 m A=C_{1} \frac{2 V}{1 / 60 s}
$$

$$
C_{1}=119.4 \mu F
$$

### 15.11 mA

Assume C2 $=0$

$$
\begin{aligned}
& V_{2}(A C)=\left(\frac{1000}{1000+(277+j 3770)}\right) 2 V_{p p} \\
& V_{2}(A C)=529 m V_{p p}
\end{aligned}
$$

To reduce the ripple to 300 mVpp , the 1000 Ohms at the load needs to be reduced

$$
\begin{aligned}
& \left|\frac{1}{j \omega C}\right|=|-j X|=\left(\frac{300 m V_{p p}}{529 m V_{p p}}\right) 1000 \Omega=567 \Omega \\
& \left|\frac{1}{j \omega C}\right|=567 \Omega \\
& C_{2}=4.678 \mu F
\end{aligned}
$$

6) Build this circuit in CircuitLab (or similar program) and verify your calculations for problem \#5



|  | V1 |  | V2 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | DC | AC | DC | AC |
| Calculated | 18.30 V | 2.000 Vpp | 14.33 V | 300 mVpp |
| Simulated | 18.33 V | 1.840 Vpp | 14.34 V | 190 mVpp |

